Skip to main content
Log in

Ion dynamics and relaxation behavior of NaPF6-doped polymer electrolyte systems

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present paper discusses the ion dynamics of a novel polymeric system prepared by doping of NaPF6 in a lab-prepared polymer matrix. Ion dynamics of the system is analyzed by presenting the impedance data in different formalisms. Mobility (and hence the conductivity) continuously increases with salt concentration, and the phenomenon is correlated with salt’s plasticization nature, which is reconfirmed by the shifting of minima in ∂logε′/∂logω vs. logω curve towards high frequency. It has been observed that number of charge carriers (N′) estimated from conductivity data do not represent the real charge concentration in the system. Within the experimental frequency (∼MHz) range, three different regions are identified in ∂logσ vs. ∂logω curves namely (i) dc conductivity/free hopping, (ii) correlated ion hopping, and (iii) caged movement of ions. In the present case, also a scaled master conductivity curve is obtained by estimating the σ 0 and ω p (exclusively in Jonscher Power Law or JPL region) according to our previously proposed method. Scaling is realized with respect to salt concentration and temperature, which is an indication that salt concentration and temperature are only governing the number of charge carriers and mobility without affecting the underlying ion transport mechanism. Non-Debye-type relaxation phenomenon is indicated by KWW exponent β (<1). Relaxation times, obtained from tanδ vs. logω curves, inversely follow the conductivity, indicating strongly correlated ion-polymer segmental motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashistha P, JN M, GK S (eds) Fast ion transport in solids,. New York, Elsevier North Holland

    Google Scholar 

  2. Armand MB, Chabagno JM, Duclot MJ (1978) In Second International Meeting on Solid El...ectrolytes. St Andrews, Scotland

    Google Scholar 

  3. Wright PV (1975) Br Polym J 7:319–327

    Article  CAS  Google Scholar 

  4. Sulaiman M, Rahman AA, Mohamed NS (2013) Int J Electrochem Sci 8:6647–6655

    CAS  Google Scholar 

  5. Xu JJ, Ye H, Huang J (2005) Electrochem Commun 7:1309–1317

    Article  CAS  Google Scholar 

  6. Yamagata M, Soeda K, Ikebe S, Yamazaki S, Ishikawa M (2013) Electrochim Acta 100:275–280

    Article  CAS  Google Scholar 

  7. Pas SJ, Banhatti RD, Funke K (2006) Solid State Ionics 177:3135–3139

    Article  CAS  Google Scholar 

  8. Hashmi SA, Chandra S (1995) Mater Sci Eng B 34:18–26

    Article  Google Scholar 

  9. Bhide A, Hofmann J, Durr AK, Janeka J, Adelhelm P (2014) Phys Chem Chem Phys 16:1987–1998

    Article  CAS  Google Scholar 

  10. Yea H, Huanga J, Xua JJ, Khalfan A, Greenbaum SG (2007) J Electrochem Soc 154:A1048–A1057

    Article  Google Scholar 

  11. Ibrahim S, Yasin SMM, Ahmad R, Johan MR (2012) Solid State Sci 14:1111–1116

    Article  CAS  Google Scholar 

  12. Mattsson B, Brodin A, Torell LM, Rinne H, Hamara J, Sundholm F, Jacobsson P (1997) Solid State Ionics 97:309–314

    Article  CAS  Google Scholar 

  13. Tiwari T, Pandey K, Srivastava N, Srivastava PC (2011) J Appl Polym Sci 121:1–7

    Article  CAS  Google Scholar 

  14. Ohno H (ed) (2005) Electrochemical aspects of ionic liquids. John Wiley & Sons, Hoboken

    Google Scholar 

  15. Srivastava N, Kumar M (2014) Solid State Ionics 262:806–810

    Article  CAS  Google Scholar 

  16. Laughman DM, Banhatti RD, Funke K (2010) Phys Chem Chem Phys 12:14102–141108

    Article  CAS  Google Scholar 

  17. Sørensen TS, Compan V (1995) J Chem Soc Faraday Trans 91:4235–4250

    Article  Google Scholar 

  18. Munar A, Andrio A, Iserte R, Compan V (2011) J Non-Cryst Solids 357:3064–3069

    Article  CAS  Google Scholar 

  19. Wang YY, Agapov AL, Fan F, Hong K, Yu X, Mays J, Sokolov AP (2012) Phys Rev Lett 108:088303

    Article  Google Scholar 

  20. Kim C, Lee G, Liou K, Ryu KS, Kang SG, Chang SH (1999) Solid State Ionics 123:251–257

    Article  CAS  Google Scholar 

  21. Bruce PG (ed) (1995) Solid state electrochemistry, Cambridge University Press

  22. Aji MP, Masturi BS, Khairurrijal AM (2012) Am J Appl Sci 9(6):946–954

    Article  CAS  Google Scholar 

  23. Kumar M, Srivastava N (2014) Mater Res Express 1:045003

    Article  Google Scholar 

  24. Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Rep Prog Phys 72:046501

    Article  Google Scholar 

  25. Papathanassiou AN, Sakellis I, Grammatikakis J (2007) Appl Phys Lett 91:122911

    Article  Google Scholar 

  26. Lunkenheimer P, Loidl A (2003) Phys Rev Lett 91:207601

    Article  CAS  Google Scholar 

  27. Jonscher AK (1977) Nature 267:673–679

    Article  CAS  Google Scholar 

  28. Patro LN, Hariharan K (2009) Mater Chem Phys 116:81–87

    Article  CAS  Google Scholar 

  29. Sidebottom DL (1999) Phys Rev Lett 82:3653

    Article  CAS  Google Scholar 

  30. Sidebottom DL (2009) Rev Mod Phys 81:999–1014

    Article  Google Scholar 

  31. Roling B, Martiny C (2000) Phys Rev Lett 85:1274

    Article  CAS  Google Scholar 

  32. Ngai KL, Moynihan CT (1998) Mater Res Soc Bull 23(11):51–56

    CAS  Google Scholar 

  33. Kumar M, Srivastava N (2014) J Non-Cryst Solids 389:28–34

    Article  CAS  Google Scholar 

  34. Kumar M, Srivastava N (2015) Ionics 21(5):1301–1310

    Article  CAS  Google Scholar 

  35. Kumar M (2014) “Ion Dynamic Studies of Few Sodium and Ammonium salt Containing Polymer Electrolyte Systems” Ph.D thesis submitted to Banaras Hindu University, India

  36. Williams G, Watts DC (1970) Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  37. Kyritsis A, Pissis P, Grammatikakis J (1995) J. Polym. Sci., Part B: Polym. Phys. 33:1737–1750

    CAS  Google Scholar 

  38. Ghosh S, Ghosh A (2003) J Chem Phys 119:9106

    Article  CAS  Google Scholar 

  39. Almond DP, West AR (1983) Nature 306:456–457

    Article  CAS  Google Scholar 

  40. Karmakar A, Ghosh A (2012) Curr Appl Phys 12:539–543

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DST, New Delhi, for research project SR/S2/CMP00652007/dated 8.4.2008, whose instruments are used in the present study. One of the authors (MK) is thankful to the UGC, New Delhi, India, for the award of Rajiv Gandhi National-Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Srivastava.

Additional information

Neelam Srivastava and Manindra Kumar equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Kumar, M. Ion dynamics and relaxation behavior of NaPF6-doped polymer electrolyte systems. J Solid State Electrochem 20, 1421–1428 (2016). https://doi.org/10.1007/s10008-016-3147-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3147-1

Keywords

Navigation