Skip to main content

Advertisement

Log in

Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10−3 S cm−1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g−1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ye W, Zhu J, Liao XJ, Jiang SH, Li YH, Fang H, Hou HQ (2015) J Power Sources 299:417–424

    Article  CAS  Google Scholar 

  2. Miao Y, Zhu YG, Hou HQ, Xia YY, Liu TX (2013) J Power Sources 266:82–86

    Article  Google Scholar 

  3. Kumar J, Kichambare P, Rai AK, Bhattacharya R, Rodrigues S, Subramanyam G (2016) J Power Sources 301:194–198

    Article  CAS  Google Scholar 

  4. Zhao P, Yang JP, Shang YM, Wang L, Fang M, Wang JL, He XM (2015) J Energy Chem 24:138–144

    Article  Google Scholar 

  5. Gong SD, Huang Y, Cao HJ, Lin YH, Li Y, Tang SH, Wang MS, Li X (2016) J Power Sources 307:624–633

    Article  CAS  Google Scholar 

  6. Wang QJ, Song WL, Fan LZ, Shi Q (2015) J Power Sources 295:139–148

    Article  CAS  Google Scholar 

  7. Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  8. Wang SH, Kuo PL, Hsieh CT, Teng H (2014) ACS Appl Mater Interfaces 6:19360–19370

    Article  CAS  Google Scholar 

  9. Kim DW (1998) J Power Sources 76:175–179

    Article  CAS  Google Scholar 

  10. Zheng JY, Li X, Yu YJ, Zhen XM, Song YY, Feng XM, Zhao YF (2014) J Solid State Electrochem 18:2013–2018

    Article  CAS  Google Scholar 

  11. Peng XX, Zhou L, Jing B, Cao Q, Wang XY, Tang XL, Zeng J (2016) J Solid State Electrochem 20:255–262

    Article  CAS  Google Scholar 

  12. Santhosh P, Gopalan A, Vasudevan T, Lee KP (2006) J Appl Polym Sci 101:611–617

    Article  CAS  Google Scholar 

  13. Jiang Z, Carroll B, Abraham KM (1997) Electrochim Acta 42:2667–2677

    Article  CAS  Google Scholar 

  14. Gopalan AI, Santhosh P, Manesh KM (2008) J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  15. Tsai PP, Gibson HS, Gibson P (2002) J Electrost 54:333–341

    Article  CAS  Google Scholar 

  16. Wang X, Drew C, Lee SH, Senecal KJ, Kumar J, Samuelson LA (2002) Nano Lett 2:1273–1275

    Article  CAS  Google Scholar 

  17. Lu L, Zuo XX, Li WS, Liu JS, Xu MQ (2007) Acta Chim Sin 65:475–480

    CAS  Google Scholar 

  18. Choi SW, Jo SM, Lee WS, Kim YR (2003) Adv Mater 15:2027–2032

    Article  CAS  Google Scholar 

  19. Abbrent S, Pletstil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Polymer 42:1407–1416

    Article  CAS  Google Scholar 

  20. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrochim Acta 50:69–75

    Article  CAS  Google Scholar 

  21. Zhai YY, Wang N, Mao X, Si Y, Yu JY, Al-Deyab SS, El-Newehy M, Ding B (2014) J Mater Chem A 2:14511–14518

    Article  CAS  Google Scholar 

  22. Chen WY, Liu YB, Ma Y, Yang WX (2015) J Power Sources 273:1127–1135

    Article  CAS  Google Scholar 

  23. Hao Q, Xu CX, Jia SZ, Zhao XY (2013) Electrochim Acta 113:439–445

    Article  CAS  Google Scholar 

  24. Gopalan AI, Lee KP, Manish KM, Santhosh P (2008) J Membr Sci 318:422–428

    Article  CAS  Google Scholar 

  25. Kim JK, Cheruvally G, Li X, Ahn JH, Kim KM, Ahn HJ (2008) J Power Sources 178:815–820

    Article  CAS  Google Scholar 

  26. Zhong Z, Cao Q, Jing B, Wang XY, Li XY, Den HY (2012) Mater Sci Eng B Adv 177:86–91

    Article  CAS  Google Scholar 

  27. Sivakumar M, Subadevi R, Rajendran S, Wu HC, Wu NL (2007) Eur Polym J 43:4466–4473

    Article  CAS  Google Scholar 

  28. Wu N, Cao Q, Wang XY, Chen QQ (2011) Solid State Ionics 203:42–46

    Article  CAS  Google Scholar 

  29. Rajendran S, Mahendran O, Mahalingam T (2002) Eur Polym J 38:49–55

    Article  CAS  Google Scholar 

  30. Rajendran S, Mahendran O, Kannan R (2002) Mater Chem Phys 74:52–57

    Article  CAS  Google Scholar 

  31. Wang YP, Gao XH, Wang RM (2008) Funct Polym 68:1170–1177

    Article  CAS  Google Scholar 

  32. Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Carbohydr Polym 86:1790–1798

    Article  CAS  Google Scholar 

  33. Weng BC, Xu FH, Alcoutlabi M, Mao YB, Lozano K (2015) Cellulose 22:1311–1320

    Article  CAS  Google Scholar 

  34. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Benevent D (2013) Cellulose 20:1523–1545

    Article  CAS  Google Scholar 

  35. Chun SJ, Choi ES, Lee EH, Kim JH, Lee SY, Lee SY (2012) J Mater Chem 22:16618–16626

    Article  CAS  Google Scholar 

  36. Mu CX, Su YL, Sun MP, Chen WJ, Jiang ZY (2010) J Membr Sci 350:293–300

    Article  CAS  Google Scholar 

  37. Arthanareeswaran G, Thanikaivelan P, Raajenthiren M (2008) Ind Eng Chem Res 47:1488–1494

    Article  CAS  Google Scholar 

  38. Chiang CY, Shen YJ, Reddy MJ, Chu PP (2003) J Power Sources 123:222–229

    Article  CAS  Google Scholar 

  39. Kataoka H, Saito Y, Sakai T (2000) J Phys Chem B 104:11460–11464

    Article  CAS  Google Scholar 

  40. Saito Y, Kataoka H, Quartarone E, Mustarelli P (2002) J Phys Chem B 106:7200–7204

    Article  CAS  Google Scholar 

  41. Chang CY, Shen YJ, Reddy MJ, Chu PP (2003) J Power Sources 123:222–229

    Article  Google Scholar 

  42. Malmonge LF, Langiano SC, Cordeiro JM, Mattoso LH, Malmonge JA (2010) Mater Res 13:465–470

    Article  CAS  Google Scholar 

  43. Cao J, Wang L, Fang M, He XM, Li JJ, Gao J, Deng LF, Wang JL, Chen H (2014) J Power Sources 246:499–504

    Article  CAS  Google Scholar 

  44. Zhang JJ, Liu ZH, Kong QS, Zhang CJ, Pang SP, Yue LP, Wang XJ, Yao JH, Cui GL (2013) ACS Appl Mater Interfaces 5:128–134

    Article  CAS  Google Scholar 

  45. Yanilmaz M, Dirican M, Zhang XW (2014) Electrochim Acta 133:501–508

    Article  CAS  Google Scholar 

  46. Chen WJ, Shi LY, Wang ZY, Zhu JF, Yang HJD, Mao XF, Chi MM, Sun LN, Yuan S (2016) Carbohydr Polym 147:517–524

    Article  CAS  Google Scholar 

  47. Xu Q, Kong QS, Liu ZH, Wang XJ, Liu RZ, Zhang JJ, Yue LP, Duan YL, Cui GL (2014) ACS Sustain Chem Eng 2:194–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (51102178), National Key Technology Support Program (2015BAE01B03), Innovation Fund for Technology of China (14C26211200298), Innovation Fund for Technology of Tianjin (14ZXCXGX00776), and Chang-jiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT13084) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Yan or Bowen Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Ma, X., Zhao, H. et al. Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries. J Solid State Electrochem 20, 2791–2803 (2016). https://doi.org/10.1007/s10008-016-3271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3271-y

Keywords

Navigation