Skip to main content
Log in

Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to constant necessity to have reliable and sensitive gas sensors in many contemporary technologies, there is a permanent need for development of new sensing platforms with good sensing properties. Here, we demonstrate a novel type of resistive gas sensors based on carbonized polyaniline/Nafion composites. The sensing mechanism of such sensors is based on the sorption of gases by the composites which induce Nafion swelling and decreasing of conductivity. Chemosensitive properties can be tuned by the (i) choice of carbon materials with different conductivities, (ii) Nafion content in the composite, and (iii) thickness of the composite layer. We have shown that the sensors respond to water, acetone, ethanol, and methanol vapors. For the last two cases, we have achieved high sensitivity, fast response, wide concentration range, and good recovery. The use of simultaneous two- and four-point techniques for these sensors provides an internal control of the sensor integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mirica KA, Azzarelli JM, Weis JG, Schnorr JM, Swager TM (2013) Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc Natl Acad Sci 13:E3265–E3270

    Article  Google Scholar 

  2. Potyrailo RA, Surman C, Nagraj N, Burns A (2011) Materials and transducers toward selective wireless gas sensing. Chem Rev 111(11):7315–7354

    Article  CAS  Google Scholar 

  3. Altenberend U, Oprea A, Barsan N, Weimar U (2013) Contribution of polymeric swelling to the overall response of capacitive gas sensors. Anal Bioanal Chem 405:6445–6452

    Article  CAS  Google Scholar 

  4. Morisawa M, Kato S (2014) Improvement in response of swelling clad-type POF humidity sensor using a multicladding layer. IEEE SENSORS, 1799–1802. doi:10.1109/ICSENS.2014.6985375

  5. Morisawa M, Amemiya Y, Kohzu H, Liang CX, Muto S (2001) Plastic optical fibre sensor for detecting vapour phase alcohol. Meas Sci Technol 12:877–881

    Article  CAS  Google Scholar 

  6. Samoylov AV, Mirsky VM, Hao Q, Swart C, Shirshov YM, Wolfbeis OS (2005) Nanometer-thick SPR sensor for gaseous HCl. Sens. Actuators B106:369–372

    Article  Google Scholar 

  7. Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS (2005) Optical ozone sensing properties of poly (2-chloroaniline), poly (N-methylaniline) and polyaniline films. Sens. Actuators B108:528–534

    Article  Google Scholar 

  8. Hodgkinson J, Tatam RP (2012) Optical gas sensing: a review. Meas Sci Technol 24:012004. doi:10.1088/0957-0233/24/1/012004

    Article  Google Scholar 

  9. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanalytical revs 4:115–157

    Article  Google Scholar 

  10. Askim Jr, Mahmoudiab M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42:8649–8682

    Article  CAS  Google Scholar 

  11. Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283

    Article  CAS  Google Scholar 

  12. Chen HW, Wu RJ, Chan KH, Sun YL, Su PG (2005) The application of CNT/nafion composite material to low humidity sensing measurement. Sensors Actuators B Chem 104:80–84

    Article  CAS  Google Scholar 

  13. Alder JF, McCallum JJ (1983) Piezoelectric crystals for mass and chemical measurements. A review Analyst 108:1169–1189

    Article  CAS  Google Scholar 

  14. Fei T, Zhao H, Jiang K, Zhou X, Zhang T (2013) Polymeric humidity sensors with nonlinear response: properties and mechanism investigation. J Appl Polym Sci 130:2056–2061

    Article  CAS  Google Scholar 

  15. Vasjari M., Mirsky VM (2007) Chemoresistor for determination of mercury vapor. In: Alegret S., Merkoci a (eds.), Electrochemical sensor analysis. Compr Anal Chem, vol. 49, Elsevier, 235–251

  16. Siemons M, Koplin TJ, Simon U (2007) Advances in high throughput screening of gas sensing materials. Appl Surf Sci 254:669–676

    Article  CAS  Google Scholar 

  17. Wolpert B, Leitl M, Pfitzner A, Mirsky VM (2008) Chemosensitive properties of electrically conductive Cu (I)-compounds at room temperature. Sens Actuators B134:839–842

    Article  Google Scholar 

  18. Lei H, Pitt WG, McGrath LK, Ho CK (2007) Modeling carbon black/polymer composite sensors. Sensors Actuators B Chem 125:396–407

    Article  CAS  Google Scholar 

  19. Lange U, Hirsch T, Mirsky VM, Wolfbeis OS (2011) Hydrogen sensor based on a graphene–palladium nanocomposite. Electrochim Acta 56:3707–3712

    Article  CAS  Google Scholar 

  20. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    Article  CAS  Google Scholar 

  21. Mirsky VM, Kulikov V, Hao Q, Wolfbeis OS (2004) Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers. Macromol Rap Comm 25:253–258

    Article  CAS  Google Scholar 

  22. Ivanov S, Tsakova V, Mirsky VM (2006) Conductometric transducing in electrocatalytical sensors: detection of ascorbic acid. Electrochem Comm 8:643–646

    Article  CAS  Google Scholar 

  23. Lange U, Mirsky VM (2011) Chemosensitive nanocomposite for conductometric detection of hydrazine and NADH. Electrochim Acta 56:3679–3684

    Article  CAS  Google Scholar 

  24. Slobodian P, Riha P, Lengalova A, Svoboda P, Saha P (2011) Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon 49:2499–2507

    Article  CAS  Google Scholar 

  25. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubb RH, Lewis NS (1996) Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater 8:2298–2312

    Article  CAS  Google Scholar 

  26. Ho CK, Hughes RC (2002) In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors 2:23–34

    Article  CAS  Google Scholar 

  27. Carrillo A, Martin-Dominguez IR, Rosas A, Marquez A (2002) Numerical method to evaluate the influence of organic solvent absorption on the conductivity of polymeric composites. Polymer 43:6307–6313

    Article  CAS  Google Scholar 

  28. Grate JW, Abraham MH (1991) Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sensors Actuators B Chem 3:85–111

    Article  CAS  Google Scholar 

  29. Peris M, Escuder-Gilabert L (2013) On-line monitoring of food fermentation processes using electronic noses and electronic tongues: a review. Anal Chim Acta 804:29–36

    Article  CAS  Google Scholar 

  30. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626

    Article  CAS  Google Scholar 

  31. Efremenko Y, Mirsky VM (2016) Electrically controlled variation of receptor affinity. Analyt Bioanalyt Acta. doi:10.1007/s00216-016-9751-1

    Google Scholar 

  32. Inzelt G (2012) Conducting polymers: a new era in electrochemistry. Springer

  33. Ćirić-Marjanović G, Pašti IA, Gavrilov N, Janošević A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chem Papers 67:781–813

    Google Scholar 

  34. Elliott JA, Hanna S, Elliott AMS, Cooley GE (2001) The swelling behaviour of perfluorinated ionomer membranes in ethanol/water mixtures. Polymer 42:2251–2253

    Article  CAS  Google Scholar 

  35. Young SK, Trevino SF, Beck Tan NC (2002) Investigation of the morphological changes in Nafion membranes induced by swelling with various solvents. ARL-TR-2647, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, www.arl.army.mil/arlreports/2002/ARL-TR-2647.pdf

  36. Gebel G, Lyonnard S, Mendil-Jakani H, Morin A (2011) The kinetics of water sorption in nafion membranes: a small-angle neutron scattering study. J Phys Condens Matter 23:234107

    Article  Google Scholar 

  37. Chiou NR, Lee LJ, Epstein AJ (2007) Self-assembled polyaniline nanofibers/nanotubes. Chem Mater 19:3589–3591

    Article  CAS  Google Scholar 

  38. Janošević Ležaić A, Bajuk-Bogdanović D, Radoičić M, Mirsky VM, Ćirić-Marjanović G (2016) Influence of synthetic conditions on the structure and electrical properties of nanofibrous polyanilines and their nanofibrous carbonized forms. Synt Met 214:35–44

    Article  Google Scholar 

  39. Lange U, Mirsky VM (2008) Separated analysis of bulk and contact resistance of conducting polymers: comparison of simultaneous two- and four-point measurements with impedance measurements. J Electroanal Chem 622:246–251

    Article  CAS  Google Scholar 

  40. Kulikov V, Mirsky VM, Delaney T, Donoval D, Koch AW, Wolfbeis OS (2005) High-throughput analysis of bulk and contact conductance of polymer layers prepared by combinatorial electropolymerization. Meas Sci Technol 16:95–99

    Article  CAS  Google Scholar 

  41. Hao Q, Kulikov V, Mirsky VM (2003) Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sensors Actuators B Chem 94:352–357

    Article  CAS  Google Scholar 

  42. Ćirić-Marjanović G, Pašti IA, Mentus SV (2015) One-dimensional nitrogen-containing carbon nanostructures. Progr Mater Sci 69:61–182

    Article  Google Scholar 

  43. Gavrilov N, Pašti IA, Mitrić M, Travas-Sejdić J, Ćirić-Marjanović G, Mentus SV (2012) Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media. J Power Sources 220:306–316

    Article  CAS  Google Scholar 

  44. Gavrilov N, Vujković M, Pašti IA, Ćirić-Marjanović G, Mentus SV (2011) Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium. Electrochim Acta 56:9197–9202

    CAS  Google Scholar 

  45. Janošević A, Pašti IA, Gavrilov N, Mentus SV, Krstić J, Mitrić M, Travas-Sejdic J, Ćirić-Marjanović G (2012) Microporous conducting carbonized polyaniline nanorods: synthesis, characterization and electrocatalytic properties. Micropor Mesopor Mater 152:50–57

    Article  Google Scholar 

  46. Mentus S, Ćirić-Marjanović G, Trchová K, Stejskal J (2009) Conducting carbonized polyaniline nanotubes. Nanotechnology 20:245601

    Article  Google Scholar 

  47. Shetzline JA, Creager SE (2014) Quantifying electronic and ionic conductivity contributions in carbon/polyelectrolyte composite thin films. J Electrochem Soc 161:H917–H923

    Article  CAS  Google Scholar 

  48. Mirsky VM (2001) Affinity sensors in non-equilibrium conditions: a highly selective chemosensing by means of low selective chemosensors. Sensors 1:13–17

    Article  Google Scholar 

  49. Kurihara K, Nakamichi M, Kojima K (1993) Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems. J Chem Eng Data 38:446–444

    Article  CAS  Google Scholar 

  50. Krondak M, Broncová G, Anikin S, Merz A, Mirsky VM (2006) Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles. J Solid State Electrochem 10:185–191

    Article  CAS  Google Scholar 

  51. Nagelli E, Naik R, Xue Y, Gao Y, Zhang M, Dai L (2013) Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24:444010

    Article  Google Scholar 

  52. Permpool T, Supaphol P, Sirivat A, Wannatong L, Sirivat A (2012) Polydiphenylamine–polyethylene oxide blends as methanol sensing materials. Adv Polym Technol 31:401–413. doi:10.1002/adv.20263

    Article  CAS  Google Scholar 

  53. Liu CK, Wu JM, Shih HC (2010) Application of plasma modified multi-wall carbon nanotubes to ethanol vapor detection. Sens Actuators B 150:641–648

    Article  CAS  Google Scholar 

  54. Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5:5426–5434

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The present work was supported by the German Federal Ministry of Education and Research (Grant IWINDOR 040, Danube States R&D network project: “New materials and devices based on conducting polymers and their composites—POLYCON”) and the Ministry of Education, Science and Technological Development of the Republic of Serbia (project OI172043). An assistance of Dr. K. Tonder and Dr. Danica Bajuk-Bogdanović is acknowledged. We were happy to collaborate with Prof. George Inzelt within the POLYCON project. This work is dedicated to the 70th birthday of Prof. George Inzelt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Mirsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pašti, I.A., Janošević Ležaić, A., Ćirić-Marjanović, G. et al. Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion. J Solid State Electrochem 20, 3061–3069 (2016). https://doi.org/10.1007/s10008-016-3344-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3344-y

Keywords

Navigation