Skip to main content
Log in

Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sulfonated polytriazole (SPTA) proton exchange membranes (PEMs) with a series of sulfonation degrees was synthesized based on click chemistry from a rigid diazide monomer, 4,4′-bis(azidomethyl)-1,1′-biphenyl (BAMB), with 2,2-bis[(4-propargyloxy)phenyl]propane (BPBPA) and 4,4′-diazido-2,2′-stilbenedisulfonic acid disodium salt (DSDA). The structure of the copolymers was characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). As a result of the introduction of rigid biphenyl structure and the ionic interaction between triazole rings and sulfonic acid groups, the SPTA membranes exhibited higher water uptake and lower swelling ratio compared to NRE211 membrane, indicating excellent dimensional stability. AC impedance revealed that the proton conductivity of SPTA membranes ranged from 2.5 to 35 mS/cm at 30 °C and 13–105 mS/cm at 80 °C. Besides, the membranes have high thermal and oxidative stability, good mechanical property, and low methanol permeability as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238

    Article  CAS  Google Scholar 

  2. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    Article  CAS  Google Scholar 

  3. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu W, Harvey D, Kusoglu A, Litster S, Mench MM, Mukundan R, Owejan JP, Pharoah JG, Secanell M, Zenyuk IV (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161(12):F1254–F1299

    Article  Google Scholar 

  4. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K-T, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843

    Article  CAS  Google Scholar 

  5. Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34(5):449–477

    Article  CAS  Google Scholar 

  6. Hande VR, Rath SK, Rao S, Patri M (2011) Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). J Membr Sci 372(1–2):40–48

    Article  CAS  Google Scholar 

  7. Mabrouk W, Ogier L, Vidal S, Sollogoub C, Matoussi F, Fauvarque JF (2014) Ion exchange membranes based upon crosslinked sulfonated polyethersulfone for electrochemical applications. J Membr Sci 452(0):263–270

    Article  CAS  Google Scholar 

  8. Huang YJ, Ye YS, Yen YC, Tsai LD, Hwang BJ, Chang FC (2011) Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs). Int J Hydrog Energy 36(23):15333–15343

    Article  CAS  Google Scholar 

  9. Asensio JA, Borrós S, Gómez-Romero P (2004) Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly(2,5-benzimidazole) membranes. J Electrochem Soc 151(2):A304–A310

    Article  CAS  Google Scholar 

  10. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  11. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to Azides. J Org Chem 67(9):3057–3064

    Article  Google Scholar 

  12. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  13. Scheel AJ, Komber H, Voit BI (2004) Novel hyperbranched poly([1,2,3]-triazole)s derived from AB2 monomers by a 1,3-dipolar cycloaddition. Macromol Rapid Commun 25(12):1175–1180

    Article  CAS  Google Scholar 

  14. Smith KA, Lin Y-H, Dement DB, Strzalka J, Darling SB, Pickel DL, Verduzco R (2013) Synthesis and crystallinity of conjugated block copolymers prepared by click chemistry. Macromolecules 46(7):2636–2645

    Article  CAS  Google Scholar 

  15. Zhu Y, Huang Y, Meng W-D, Li H, Qing F-L (2006) Novel perfluorocyclobutyl (PFCB)-containing polymers formed by click chemistry. Polymer 47(18):6272–6279

    Article  CAS  Google Scholar 

  16. Li Y, Wan L, Zhou H, Huang F, Du L (2013) A novel polytriazole-based organogel formed by the effects of copper ions. Polym Chem 4(12):3444–3447

    Article  CAS  Google Scholar 

  17. Tian J, Wan L, Huang J, Hu Y, Huang F, Du L (2007) Synthesis and characterization of a novel polytriazole resin with low-temperature curing character. Polym Adv Technol 18(7):556–561

    Article  CAS  Google Scholar 

  18. Hu Y, Luo Y, Wan L, Qi H, Huang F, Du L (2005) 1,3-Dipolar cycloaddition polymerization of bispropargyl ether of bisphenol-a with 4,4′-biphenyl dibenzyl azide and their thermal analyses. Acta Polym Sin 4:560–565

    Google Scholar 

  19. Wan L, Luo Y, Xue L, Tian J, Hu Y, Qi H, Shen X, Huang F, Du L, Chen X (2007) Preparation and properties of a novel polytriazole resin. J Appl Polym Sci 104(2):1038–1042

    Article  CAS  Google Scholar 

  20. Wan L, Han D, Liu Q, Xu Z, Huang F (2016) Polyether-based main-chain-type polytriazole elastomer with benzoxazine via a 1,3-dipolar cycloaddition reaction. J Appl Polym Sci 133(1):42820

    Article  Google Scholar 

  21. Kim J-D, Mori T, Hayashi S, Honma I (2007) Anhydrous proton-conducting properties of Nafion–1,2,4-triazole and Nafion–benzimidazole membranes for polymer electrolyte fuel cells. J Electrochem Soc 154(4):A290–A294

    Article  CAS  Google Scholar 

  22. Song M-K, Zhu X, Liu M (2013) A triazole-based polymer electrolyte membrane for fuel cells operated in a wide temperature range (25–150 °C) with little humidification. J Power Sources 241(0):219–224

    Article  CAS  Google Scholar 

  23. Li HQ, Liu XJ, Xu J, Xu D, Ni H, Wang S, Wang Z (2016) Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. J Membr Sci 509:173–181

    Article  CAS  Google Scholar 

  24. Nguyen MDat T, Dang Hai S, Kim D (2015) Proton exchange membranes based on sulfonated poly(arylene ether ketone) containing triazole group for enhanced proton conductivity. J Membr Sci 496:13–20

    Article  Google Scholar 

  25. Ge Q, Ran J, Miao J, Yang Z, Xu T (2015) Click chemistry finds its way in constructing an ionic highway in anion-exchange membrane. ACS Appl Mat Interfaces 7(51):28545–28553

    Article  CAS  Google Scholar 

  26. Ko T, Kim K, Jung B-K, Cha S-H, Kim S-K, Lee J-C (2015) Cross-linked sulfonated poly(arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells. Macromolecules 48(4):1104–1114

    Article  CAS  Google Scholar 

  27. Ponomarev II, Zharinova MY, Petrovskii PV, Klemenkova ZS (2009) New poly(1,2,3-triazolesulfonic acids) for proton exchange membranes of fuel cell. Dokl Chem 429(2):305–310

    Article  CAS  Google Scholar 

  28. Huang Y-J, Ye Y-S, Syu Y-J, Hwang B-J, Chang F-C (2012) Synthesis and characterization of sulfonated polytriazole-clay proton exchange membrane by in situ polymerization and click reaction for direct methanol fuel cells. J Power Sources 208:144–152

    Article  CAS  Google Scholar 

  29. Singh A, Mukherjee R, Banerjee S, Komber H, Voit B (2014) Sulfonated polytriazoles from a new fluorinated diazide monomer and investigation of their proton exchange properties. J Membr Sci 469(0):225–237

    Article  CAS  Google Scholar 

  30. Lee H-S, Lane O, McGrath JE (2010) Development of multiblock copolymers with novel hydroquinone-based hydrophilic blocks for proton exchange membrane (PEM) applications. J Power Sources 195(7):1772–1778

    Article  CAS  Google Scholar 

  31. Roy A, Lee H-S, McGrath JE (2008) Hydrophilic–hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes—part B. Polymer 49(23):5037–5044

    Article  CAS  Google Scholar 

  32. Choi J, Kim DH, Kim HK, Shin C, Kim SC (2008) Polymer blend membranes of sulfonated poly(arylene ether ketone) for direct methanol fuel cell. J Membr Sci 310(1–2):384–392

    Article  CAS  Google Scholar 

  33. Su L (2009) Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell. Int J Hydrogen Energy

  34. Di Vona ML, Sgreccia E, Licoccia S, Alberti G, Tortet L, Knauth P (2009) Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J Phys Chem B 113(21):7505–7512

    Article  CAS  Google Scholar 

  35. Xue SN, Yin GP (2006) Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone). Polymer 47(14):5044–5049

    Article  CAS  Google Scholar 

  36. Li J, Zhang Y, Zhang S, Huang X (2015) Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J Membr Sci 490:179–189

    Article  CAS  Google Scholar 

  37. Shao Z-G, Joghee P, Hsing IM (2004) Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229(1–2):43–51

    Article  CAS  Google Scholar 

  38. Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104(10):4637–4678

    Article  CAS  Google Scholar 

  39. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39

    Article  CAS  Google Scholar 

  40. Luu DX, Cho E-B, Han OH, Kim D (2009) SAXS and NMR analysis for the cast solvent effect on sPEEK membrane properties. J Phys Chem B 113(30):10072–10076

    Article  CAS  Google Scholar 

  41. Einsla BR, Kim YS, Hickner MA, Hong Y-T, Hill ML, Pivovar BS, McGrath JE (2005) Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance. J Membr Sci 255(1–2):141–148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farong Huang.

Electronic supplementary material

ESM 1

(PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Wan, L., Zhou, Y. et al. Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane. J Solid State Electrochem 21, 725–734 (2017). https://doi.org/10.1007/s10008-016-3421-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3421-2

Keywords

Navigation