Skip to main content
Log in

Sensitive detection of biomolecules and DNA bases based on graphene nanosheets

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High surface area electrode materials are of interest for the application of electrochemical sensors. Currently, chemical vapor deposition (CVD) graphene-sensing electrodes are scarce. Herein, for the first time, a graphene based on a Ta wire support was prepared using the CVD method to form a highly electroactive biosensing platform. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were utilized to characterize the morphology and investigate the electrochemical properties of the CVD graphene electrodes. The resulting CVD graphene electrode exhibited good electrocatalytic activity and had a prominent response effect on dopamine, uric acid, guanine, and adenine. Standing graphene nanosheets have rich catalytic sites such as the edges, the defect levels of the plane, and porous network structures between the graphene nanosheets. These catalytic sites prompt the adsorption and resolution for the four species and the strong electron transport capability of the CVD graphene, which effectively improved the electrical signals for response to four species. Moreover, the graphene electrode is a promising candidate in electrochemical sensing and other electrochemical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Narang J, Malhotra N, Singh G, Pundir CS (2015) Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens Bioelectron 66:332–337

    Article  CAS  Google Scholar 

  2. Pandey I, Kant R (2016) Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode. Biosens Bioelectron 77:715–724

    Article  CAS  Google Scholar 

  3. Sethuraman V, Muthuraja P, Anandha Raj J, Manisankar P (2015) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Biosens Bioelectron.

  4. Zhao L, Li H, Gao S, Li M, Xu S, Li C, Guo W, Qu C, Yang B (2015) MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 168:191–198

    Article  CAS  Google Scholar 

  5. Dai W, Li M, Li H, Yang B (2014) Amperometric biosensor based on nanoporous nickel/boron-doped diamond film for electroanalysis of l-alanine. Sensors Actuators B Chem 201:31–36

    Article  CAS  Google Scholar 

  6. Dai W, Li H, Li M, Li C, Wu X, Yang B (2015) Electrochemical imprinted polycrystalline nickel-nickel oxide half-nanotube-modified boron-doped diamond electrode for the detection of l-serine. ACS Appl Mater Interfaces 7:22858–22867

    Article  CAS  Google Scholar 

  7. Nalini S, Nandini S, Shanmugam S, Neelagund SE, Melo JS, Suresh GS (2014) Amperometric hydrogen peroxide and cholesterol biosensors designed by using hierarchical curtailed silver flowers functionalized graphene and enzymes deposits. J Solid State Electrochem 18:685–701

    Article  CAS  Google Scholar 

  8. Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503

    Article  CAS  Google Scholar 

  9. Lei W, Wu LH, Huang WJ, Hao QL, Zhang YH, Xia XF (2014) Microwave-assisted synthesis of hemin-graphene/poly (3,4-ethylenedioxythiophene) nanocomposite for a biomimetic hydrogen peroxide biosensor. J Mater Chem B 2:4324–4330

    Article  CAS  Google Scholar 

  10. Elahi MY, Khodadadi AA, Mortazavi Y (2014) A glucose biosensor based on glucose oxidase immobilized on ZnO/Cu2O graphene oxide. Nanocomposite Electrode J Electrochem Soc 161:B81–B87

    Article  CAS  Google Scholar 

  11. Goh MS, Pumera M (2010) Single-, few-, and multilayer graphene not exhibiting significant advantages over graphite microparticles in electroanalysis. Anal Chem 82:8367–8370

    Article  CAS  Google Scholar 

  12. Goh MS, Bonanni A, Ambrosi A, Sofer Z, Pumera M (2011) Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. Analyst 136:4738–4744

    Article  CAS  Google Scholar 

  13. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  14. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M (2016) Graphene and its electrochemistry—an update. Chem Soc Rev 45:2458–2493

    Article  Google Scholar 

  15. Nirala NR, Abraham S, Kumar V, Pandey SA, Yadav U, Srivastava M, Srivastava SK, Singh VN, Kayastha AM, Srivastava A, Saxena PS (2015) Partially reduced graphene oxide-gold nanorods composite based bioelectrode of improved sensing performance. Talanta 144:745–754

    Article  CAS  Google Scholar 

  16. Li SQ, Yan YR, Zhong L, Liu P, Sang Y, Cheng W, Ding SJ (2015) Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles. Microchim Acta 182:1917–1924

    Article  CAS  Google Scholar 

  17. Yi Y, Zhu G, Wu X, Wang K (2016) Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly (l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode. Biosens Bioelectron 77:353–358

    Article  CAS  Google Scholar 

  18. Wang L, Ye Y, Shen Y, Wang F, Lu X, Xie Y, Chen S, Tan H, Xu F, Song Y (2014) Hierarchical nanocomposites of CO3O4/polyaniline nanowire arrays/reduced graphene oxide sheets for amino acid detection. Sensors Actuators B Chem 203:864–872

    Article  CAS  Google Scholar 

  19. Li H, Li M, Guo W, Di H, Fang C, Yang B (2014) Electrochemical application of titanium dioxide nanoparticle/gold nanoparticle/multiwalled carbon nanotube nanocomposites for nonenzymatic detection of ascorbic acid. J Solid State Electrochem 18:477–485

    Article  CAS  Google Scholar 

  20. Zhang L, Shi Z, Lang Q (2011) Fabrication of poly (orthanilic acid)-multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15:801–809

    Article  CAS  Google Scholar 

  21. Gonzalez Z, Vizireanu S, Dinescu G, Blanco C, Santamaria R (2012) Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries. Nano Energy 1:833–839

    Article  CAS  Google Scholar 

  22. Ge C, Li H, Li M, Li C, Wu X, Yang B (2015) Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers. Carbon 95:1–9

    Article  CAS  Google Scholar 

  23. Hassan S, Suzuki M, Mori S, El-Moneim AA (2014) MnO2/carbon nanowalls composite electrode for supercapacitor application. J Power Sources 249:21–27

    Article  CAS  Google Scholar 

  24. Wu YH (2002) Effects of localized electric field on the growth of carbon nanowalls. Nano Lett 2:355–359

    Article  CAS  Google Scholar 

  25. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514

    Article  CAS  Google Scholar 

  26. Zhao J, Shaygan M, Eckert J, Meyyappan M, Ruemmeli MH (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071

    Article  CAS  Google Scholar 

  27. Cho HJ, Kondo H, Ishikawa K, Sekine M, Hirarnatsu M, Hori M (2014) Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68:380–388

    Article  CAS  Google Scholar 

  28. Liu XF, Zhang L, Wei SP, Chen SH, Ou X, Lu QY (2014) Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron 57:232–238

    Article  CAS  Google Scholar 

  29. Prathap MUA, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295

    Article  Google Scholar 

  30. Wang P, Wu H, Dai Z, Zou XY (2011) Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film. Biosens Bioelectron 26:3339–3345

    Article  CAS  Google Scholar 

  31. Rezaei B, Boroujeni MK, Ensafi AA (2015) Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens Bioelectron 66:490–496

    Article  CAS  Google Scholar 

  32. Stiburkova B, Pavlikova M, Sokolova J, Kozich V (2014) Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS One 9:e97646

    Article  Google Scholar 

  33. Hounsou C, Margathe JF, Oueslati N, Belhocine A, Dupuis E, Thomas C, Mann A, Ilien B, Rognan D, Trinquet E, Hibert M, Pin JP, Bonnet D, Durroux T (2015) Time-resolved FRET binding assay to investigate hetero-oligomer binding properties: proof of concept with dopamine D1/D3 heterodimer. ACS Chem Biol 10:466–474

    Article  CAS  Google Scholar 

  34. Chae SJ, Guenes F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328

    Article  CAS  Google Scholar 

  35. Ni ZH, Fan HM, Fan XF, Wang HM, Zheng Z, Feng YP, Wu YH, Shen ZX (2007) High temperature Raman spectroscopy studies of carbon nanowalls. J Raman Spectrosc 38:1449–1453

    Article  CAS  Google Scholar 

  36. Ni G-X, Zheng Y, Bae S, Kim HR, Pachoud A, Kim YS, Tan C-L, Im D, Ahn J-H, Hong BH, Oezyilmaz B (2012) Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport. ACS Nano 6:1158–1164

    Article  CAS  Google Scholar 

  37. Shahrokhian S, Rastgar S, Amini MK, Adeli M (2012) Fabrication of a modified electrode based on Fe3O4 NPs/MWCNT nanocomposite: application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry 86:78–86

    Article  CAS  Google Scholar 

  38. Gao Y-S, Xu J-K, Lu L-M, Wu L-P, Zhang K-X, Nie T, Zhu X-F, Wu Y (2014) Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens Bioelectron 62:261–267

    Article  CAS  Google Scholar 

  39. Niu LM, Lian KQ, Shi HM, Wu YB, Kang WJ, Bi SY (2013) Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly (SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sensors Actuators B Chem 178:10–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National key R&D program (No. 2016YFB0402703), the National Nature Science Foundation of China (Nos. 61301045, 61401306, and 61504096), the Natural Science Foundation of Tianjin City (Nos. 13JCZDJC36000, 15JCYBJC24000, 16JCTPJC50800, and 16JCYBJC16300), the Excellent Young Teachers Program of Tianjin, and the Youth Top-notch Talents Program of Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingji Li or Hongji Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Li, M., Li, H. et al. Sensitive detection of biomolecules and DNA bases based on graphene nanosheets. J Solid State Electrochem 21, 813–821 (2017). https://doi.org/10.1007/s10008-016-3423-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3423-0

Keywords

Navigation