Skip to main content

Advertisement

Log in

α-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study, iron oxide (α-Fe2O3) thin films with good adhesion on stainless steel substrates are deposited by liquid phase deposition (LPD) technique, which is additive and binder-free. Iron oxyhydroxide (FeOOH) thin films are formed by means of a ligand-exchange equilibrium reaction of metal-fluoro complex ions and an Fions consuming reaction by using boric acid (H3BO3) as a scavenging agent. These films are annealed at 500 °C to get α-Fe2O3 thin films. The transformation from hydrophobic to hydrophilic nature of the films is observed due to annealing. The films are characterized by different techniques. The α-Fe2O3 film is checked for electrochemical supercapacitive performance in Na2SO3 solutions of various concentrations. Specific capacitance is calculated from cyclic voltammetry at numerous scan rates (5–200) mV s−1. The highest obtained value of specific capacitance is 582 F g−1 at 5 mV s−1 for 0.5 M Na2SO3 electrolyte. The maximum values of specific power and specific energy are 6.9 and 53.4 Wh kg−1 from the charge-discharge curve at the current density 2 mA cm−2 in 0.5 M Na2SO3 electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, US

    Book  Google Scholar 

  2. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  3. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  4. Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2(46):19848–19854

    Article  CAS  Google Scholar 

  5. Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chemistry 20(43):13838–13852

    Article  CAS  Google Scholar 

  6. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137(4):1572–1580

    Article  CAS  Google Scholar 

  7. Lokhande CD, Dubal DP, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11(3):255–270

    Article  Google Scholar 

  8. Fisher RA, Watt MR, Ready WJ (2013) Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS Journal of Solid State Science and Technology 2(10):M3170–M3177

    Article  CAS  Google Scholar 

  9. Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2016) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  Google Scholar 

  10. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  11. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, Maghemite, and magnetite thin films produced by vapor deposition. Acs Appl Mater Inter 2(10):2804–2812

    Article  CAS  Google Scholar 

  12. Xia Q, Xu M, Xia H, Xie J (2016) Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2(7):588–600

    Article  CAS  Google Scholar 

  13. Abdi A, Trari M (2013) Investigation on photoelectrochemical and pseudo-capacitance properties of the non-stoichiometric hematite α-Fe2O3 elaborated by sol–gel. Electrochim Acta 111:869–875

    Article  CAS  Google Scholar 

  14. Fu C, Mahadevegowda A, Grant PS (2016) Production of hollow and porous Fe2O3from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J Mater Chem A 4(7):2597–2604

    Article  CAS  Google Scholar 

  15. Binitha G, Soumya MS, Madhavan AA, Praveen P, Balakrishnan A, Subramanian KRV, Reddy MV, Nair SV, Nair AS, Sivakumar N (2013) Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J Mater Chem A 1(38):11698

    Article  CAS  Google Scholar 

  16. Huang JC, Yang SN, Xu Y, Zhou XB, Jiang X, Shi NN, Cao DX, Yin JL, Wang GL (2014) Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. J Electroanal Chem 713:98–102

    Article  CAS  Google Scholar 

  17. Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloy Compd 509(5):2567–2571

    Article  CAS  Google Scholar 

  18. Liu J, Lee E, Kim YT, Kwon YU (2014) Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies. Nanoscale 6(18):10643–10649

    Article  CAS  Google Scholar 

  19. Lokhande BJ, Ambare RC, Bharadwaj SR (2014) Thermal optimization and supercapacitive application of electrodeposited Fe2O3 thin films. Measurement 47:427–432

    Article  Google Scholar 

  20. Shivakumara S, Penki TR, Munichandraiah N (2013) Synthesis and characterization of porous flowerlike -Fe2O3 nanostructures for supercapacitor application. ECS Electrochemistry Letters 2(7):A60–A62

    Article  CAS  Google Scholar 

  21. Wu MS, Lee RH (2009) Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors. J Electrochem Soc 156(9):A737–A743

    Article  CAS  Google Scholar 

  22. Xie KY, Li J, Lai YQ, Lu W, Zhang ZA, Liu YX, Zhou LM, Huang HT (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13(6):657–660

    Article  CAS  Google Scholar 

  23. Yousefi T, Golikand AN, Mashhadizadeh MH (2013) Synthesis of iron oxide nanoparticles at low bath temperature: characterization and energy storage studies. Mater Sci Semicond Process 16(6):1837–1841

    Article  CAS  Google Scholar 

  24. Zhang M, Chen K, Chen X, Peng X, Sun X, Xue D (2015) Ethylenediamine-assisted crystallization of Fe2O3 microspindles with controllable size and their pseudocapacitance performance. CrystEngComm 17(7):1521–1525

    Article  CAS  Google Scholar 

  25. Parikh H, De Guire MR (2009) Recent progress in the synthesis of oxide films from liquid solutions. J Ceram Soc Jpn 117(1363):228–235

    Article  CAS  Google Scholar 

  26. Ko HYY, Mizuhata M, Kajinami A, Deki S (2005) The dispersion of Au nanoparticles in SiO2/TiO2 layered films by the liquid phase deposition (LPD) method. Thin Solid Films 491(1–2):86–90

    Article  CAS  Google Scholar 

  27. Deki S, Aoi Y, Okibe J, Yanagimoto H, Kajinami A, Mizuhata M (1997) Preparation and characterization of iron oxyhydroxide and iron oxide thin films by liquid-phase deposition. J Mater Chem 7(9):1769–1772

    Article  CAS  Google Scholar 

  28. Tabuchi T, Katayama Y, Nukuda T, Ogumi Z (2009) Surface reaction of β-FeOOH film negative electrode for lithium-ion cells. J Power Sources 191(2):636–639

    Article  CAS  Google Scholar 

  29. Tabuchi T, Katayama Y, Nukuda T, Ogumi Z (2009) β-FeOOH thin film as positive electrode for lithium-ion cells. J Power Sources 191(2):640–643

    Article  CAS  Google Scholar 

  30. Deki S, Yoshida N, Hiroe Y, Akamatsu K, Mizuhata M, Kajinami A (2002) Growth of metal oxide thin films from aqueous solution by liquid phase deposition method. Solid State Ionics 151(1–4):1–9

    Article  CAS  Google Scholar 

  31. Chen J, Huang KL, Liu SQ (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55(1):1–5

    Article  CAS  Google Scholar 

  32. Nagarajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36(12):1399–1405

    Article  CAS  Google Scholar 

  33. Wang SY, Ho KC, Kuo SL, Wu NL (2006) Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J Electrochem Soc 153(1):A75–A80

    Article  CAS  Google Scholar 

  34. Wang SY, Wu NL (2003) Operating characteristics of aqueous magnetite electrochemical capacitors. J Appl Electrochem 33(3–4):345–348

    Article  CAS  Google Scholar 

  35. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources 113(1):173–178

    Article  CAS  Google Scholar 

  36. Shivakumara S, Penki TR, Munichandraiah N (2013) Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 18(4):1057–1066

    Article  Google Scholar 

  37. Parameshwari R, Priyadarshini P, Chandrasekaran G (2011) Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method. American Journal of Materials Science 1(1):18–25

    Google Scholar 

  38. Song YQ, Qin SS, Zhang YW, Gao WQ, Liu JP (2010) Large-scale porous hematite nanorod arrays: direct growth on titanium foil and reversible lithium storage. J Phys Chem C 114(49):21158–21164

    Article  CAS  Google Scholar 

  39. Lu J, Chen D, Jiao X (2006) Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process. J Colloid Interface Sci 303(2):437–443

    Article  CAS  Google Scholar 

  40. Sartale SD, Ansari AA, Rezvani SJ (2013) Influence of Ti film thickness and oxidation temperature on TiO2 thin film formation via thermal oxidation of sputtered Ti film. Mater Sci Semicond Process 16(6):2005–2012

    Article  CAS  Google Scholar 

  41. Colomban P, Cherifi S, Despert G (2008) Raman identification of corrosion products on automotive galvanized steel sheets. J Raman Spectrosc 39(7):881–886

    Article  CAS  Google Scholar 

  42. Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc 30(5):355–360

    Article  CAS  Google Scholar 

  43. Tahir AA, Wijayantha KGU, Saremi-Yarahmadi S, Mazhar M, McKee V (2009) Nanostructured α-Fe2O3Thin films for photoelectrochemical hydrogen generation. Chem Mater 21(16):3763–3772

    Article  CAS  Google Scholar 

  44. Nieuwoudt MK, Comins JD, Cukrowski I (2011) The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J Raman Spectrosc 42(6):1335–1339

    Article  CAS  Google Scholar 

  45. Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113(2):772–782

    Article  CAS  Google Scholar 

  46. Lee MT, Chang JK, Hsieh YT, Tsai WT (2008) Annealed Mn-Fe binary oxides for supercapacitor applications. J Power Sources 185(2):1550–1556

    Article  CAS  Google Scholar 

  47. Qing XX, Liu SQ, Huang KL, Lv KZ, Yang YP, Lu ZG, Fang D, Liang XX (2011) Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim Acta 56(14):4985–4991

    Article  CAS  Google Scholar 

  48. Lokhande BJ, Ambare RC, Mane RS, Bharadwaj SR (2013) Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Curr Appl Phys 13(6):985–989

    Article  Google Scholar 

  49. Suhasini (2013) Effect of deposition method and the surfactant on high capacitance of electrochemically deposited MnO2 on stainless steel substrate. J Electroanal Chem 690:13–18

    Article  CAS  Google Scholar 

  50. Sartale SD, Lokhande CD (2000) Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys 65(1):63–67

    Article  CAS  Google Scholar 

  51. Mohapatra M, Mohapatra L, Anand S, Mishra BK (2010) One-pot synthesis of high surface area nano-akaganeite powder and its cation sorption behavior. J Chem Eng Data 55(4):1486–1491

    Article  CAS  Google Scholar 

  52. Xiong Y, Xie Y, Chen S, Li Z (2003) Fabrication of self-supported patterns of aligned beta-FeOOH nanowires by a low-temperature solution reaction. Chemistry 9(20):4991–4996

    Article  CAS  Google Scholar 

  53. Barik R, Mohapatra M (2015) Solvent mediated surface engineering of α-Fe2O3nanomaterials: facet sensitive energy storage materials. CrystEngComm 17(47):9203–9215

    Article  CAS  Google Scholar 

  54. Mallick P, Dash BN (2013) X-ray diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanosci Nanotechnol 3(5):130–134

    Google Scholar 

  55. Schrebler R, Bello K, Vera F, Cury P, Muñoz E, del Río R, Gómez Meier H, Córdova R, Dalchiele EA (2006) An electrochemical deposition route for obtaining α-Fe[sub 2]O[sub 3] thin films. Electrochem Solid-State Lett 9(7):C110–C113

    Article  CAS  Google Scholar 

  56. Chen SM, Ramachandran R, Mani V, Saraswathi R (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int J Electrochem Sc 9(8):4072–4085

    Google Scholar 

  57. Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Scientific reports 5:12454

    Article  Google Scholar 

  58. Zhu MY, Wang Y, Meng DH, Qin XZ, Diao GW (2012) Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J Phys Chem C 116(30):16276–16285

    Article  CAS  Google Scholar 

  59. Deshmukh PR, Bulakhe RN, Pusawale SN, Sartale SD, Lokhande CD (2015) Polyaniline-RuO2 composite for high performance supercapacitors: chemical synthesis and properties. RSC Adv 5(36):28687–28695

    Article  CAS  Google Scholar 

  60. Patil SJ, Lokhande CD (2015) Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: effect of air annealing. Mater Design 87:939–948

    Article  CAS  Google Scholar 

  61. Deshmukh PR, Patil SV, Bulakhe RN, Sartale SD, Lokhande CD (2014) Inexpensive synthesis route of porous polyaniline-ruthenium oxide composite for supercapacitor application. Chem Eng J 257:82–89

    Article  CAS  Google Scholar 

  62. Zheng JP (1997) The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors. J Electrochem Soc 144(7):2417–2420

    Article  CAS  Google Scholar 

  63. Tsay KC, Zhang L, Zhang JJ (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436

    Article  CAS  Google Scholar 

  64. Cheng X, Gui X, Lin Z, Zheng Y, Liu M, Zhan R, Zhu Y, Tang Z (2015) Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J Mater Chem A 3(42):20927–20934

    Article  CAS  Google Scholar 

  65. Liu J, Zheng M, Shi X, Zeng H, Xia H (2016) Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene Nanosheets with superior electrochemical performance for supercapacitors. Adv Funct Mater 26(6):919–930

    Article  CAS  Google Scholar 

  66. Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9):3793–3799

    Article  CAS  Google Scholar 

  67. Naveen AN, Selladurai S (2014) Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim Acta 125:404–414

    Article  CAS  Google Scholar 

  68. Patil SJ, Patil BH, Bulakhe RN, Lokhande CD (2014) Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La2Te3 prepared by a chemical synthesis route. RSC Adv 4(99):56332–56341

    Article  CAS  Google Scholar 

  69. Vu A, Li X, Phillips J, Han A, Smyrl WH, Bühlmann P, Stein A (2013) Three-dimensionally ordered mesoporous (3DOm) carbon materials as electrodes for electrochemical double-layer capacitors with ionic liquid electrolytes. Chem Mater 25(21):4137–4148

    Article  CAS  Google Scholar 

  70. Patil SJ, Kumbhar VS, Patil BH, Bulakhe RN, Lokhande CD (2014) Chemical synthesis of α-La2S3 thin film as an advanced electrode material for supercapacitor application. J Alloy Compd 611:191–196

    Article  CAS  Google Scholar 

  71. Li YH, Huang KL, Yao ZF, Liu SQ, Qing XX (2011) Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors. Electrochim Acta 56(5):2140–2144

    Article  CAS  Google Scholar 

  72. Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun MS, Tong Y (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26(19):3148–3155

    Article  CAS  Google Scholar 

  73. Chodankar NR, Dubal DP, Gund GS, Lokhande CD (2015) Bendable All-Solid-State Asymmetric Supercapacitors based on MnO2and Fe2O3 Thin Films. Energy Technology 3(6):625–631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DRDP and UPE programs of Savitribai Phule Pune University, Pune, India for their financial support. The authors would like to thank Dr. Arun G. Banpurkar for contact angle measurements. The electrochemical measurements were performed on IVIUM vertex 1A potentiostat/galvanostat donated by Alexander von Humboldt foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna D. Sartale.

Electronic supplementary material

ESM 1

(DOCX 1.21 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatavkar, S.N., Sartale, S.D. α-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor. J Solid State Electrochem 21, 2555–2566 (2017). https://doi.org/10.1007/s10008-016-3457-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3457-3

Keywords

Navigation