Skip to main content
Log in

Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ionic liquid (IL)-based solid polymer electrolytes (SPEs) were synthesized by solution cast technique using polymer polyethylene oxide (PEO), lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) salt, and IL 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide (BMIMTFSI). The obtained polymer electrolytes (PEO + 20 wt.% LiTFSI) + x wt.% BMIMTFSI where x = 0, 5, 10, 15, and 20 were characterized by DSC, TGA, SEM, XRD, FTIR, electrochemical impedance spectroscopy (EIS), cyclic voltammetry, chronoamperometry, and chronocharge-discharge. Ionic conductivity of optimized composition SPE (PEO + 20 wt.% LiTFSI) + 20 wt.% BMIMTFSI is ∼1.5 × 10−4 S cm−1 at 30 °C and follows Arrhenius-type thermally activated behavior. The prepared SPEs are free-standing and flexible with excellent thermal and mechanical stabilities. SEM, XRD, and DSC studies show that the amorphicity of SPEs increases on increasing IL content due to the plasticization effect of IL. The assembled cell exhibits good electrochemical stability and cationic transference number \( {t}_{{\mathrm{Li}}^{+}}\sim 0.27 \). The capacity of cell, Li | PEO + 20 wt.% LiTFSI + 20 wt.% BMIMTFSI | LiMn2O4, shows a stable cyclic performance and high Coulombic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439

    Article  CAS  Google Scholar 

  2. Tsao C-H, Hsiao Y-H, Hsu C-H, Kuo P-L (2016) Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@ Ni scaffold. ACS Appl Mater Interfaces 8:15216–15224

    Article  CAS  Google Scholar 

  3. Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5:3529

    Google Scholar 

  4. Luo W, Zhou L, Fu K, Yang Z, Wan J, Manno M, Yao Y, Zhu H, Yang B, Hu L (2015) A thermally conductive separator for stable Li metal anodes. Nano Lett 15:6149–6154

    Article  CAS  Google Scholar 

  5. Berthier C, Gorecki W, Minier M, Armand MB, Chabgno JM, Rraiagud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95

    Article  CAS  Google Scholar 

  6. Li F, Gong Y, Jia G, Wang Q, Peng Z, Fan W, Bai B (2015) A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability. J Power Sources 295:47–54

    Article  CAS  Google Scholar 

  7. Wang X, Hou Y, Zhu Y, Wu Y, Holze R (2013) An aqueous rechargeable lithium battery using coated Li metal as anode. Scientific reports 3:1401

    Article  Google Scholar 

  8. Zhao R, Zhang S, Liu J, Gu J (2015) A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources 299:557–577

    Article  CAS  Google Scholar 

  9. Yamada I, Abe T, Iriyama Y, Ogumi Z (2003) Lithium-ion transfer at LiMn2O4 thin film electrode prepared by pulsed laser deposition. Electrochem Commun 5:502–505

    Article  CAS  Google Scholar 

  10. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Article  CAS  Google Scholar 

  11. Shui Zhang S (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8(9):1423–1428

    Article  Google Scholar 

  12. Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15:1623–1630

    Article  CAS  Google Scholar 

  13. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638

    Article  CAS  Google Scholar 

  14. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  15. Appetecchi GB, Crore F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997

    Article  CAS  Google Scholar 

  16. Dell R (2000) Batteries fifty years of materials development. Solid State Ionics 134:139–158

    Article  CAS  Google Scholar 

  17. Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64:73–120

    Article  CAS  Google Scholar 

  18. Nicotera I, Oliviero C, Henderson WA, Appetecchi GB, Passerini S (2005) NMR investigation of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSI anions. J Phys Chem B 109:22814–22819

    Article  CAS  Google Scholar 

  19. Chaurasia SK, Singh RK, Chandra S (2011) Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: evidence of complexation. Solid State Ionics 183:32–39

    Article  CAS  Google Scholar 

  20. Eshetu GG, Armand M, Ohno H, Scrosati B, Passerini S (2016) Ionic liquids as tailored media for the synthesis and processing of energy conversion materials. Energy Environ Sci 9:49–61

    Article  CAS  Google Scholar 

  21. Fung YS, Zhou RQ (1999) Room temperature molten salt as medium for lithium battery. J. Power Sources 81:891–895

    Article  Google Scholar 

  22. Garcia B, Lavallee S, Perron G, Michot C, Armand M (2004) Room temperature molten salts as lithium battery electrolyte. Electrochim Acta 49:4583–4588

    Article  CAS  Google Scholar 

  23. Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13–TFSI)—novel electrolyte base for Li battery. Electrochem Commun 5:594–598

    Article  CAS  Google Scholar 

  24. Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8:610–614

    Article  CAS  Google Scholar 

  25. Sato T, Maruo T, Marukane S, Takagi K (2004) Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. J. Power Sources 138:253–261

    Article  CAS  Google Scholar 

  26. Kim KS, Park SY, Choi S, Lee H (2006) Ionic liquid–polymer gel electrolytes based on morpholinium salt and PVDF (HFP) copolymer. J. Power Sources 155:385–390

    Article  CAS  Google Scholar 

  27. Shin JH, Henderson WA, Appetecchi GB, Alessandrini F, Passerini S (2005) Recent developments in the ENEA lithium metal battery project. Electrochim Acta 50:3859–3865

    Article  CAS  Google Scholar 

  28. Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020

    Article  CAS  Google Scholar 

  29. Singh VK, Shalu, Kumar Chaurasia S, Singh RK (2016) Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries. RSC Adv 6:40199–40210

    Article  CAS  Google Scholar 

  30. Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sources 161(1):573–579

    Article  CAS  Google Scholar 

  31. Choi J-W, Cheruvally G, Kim Y-H, Kim J-K, Manue J, Raghavan P, Ahn J-H, Kim K-W, Ahn H-J, Choi DS, Song CE (2007) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178:1235–1241

    Article  CAS  Google Scholar 

  32. Chaurasia SK, Saroj AL, Shalu SVK, Tripathi AK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5:077178

    Article  Google Scholar 

  33. Li LF, Zhou SS, Han HB, Li H, Nie J, Armand M, Zhou ZB, Huang XJ (2011) Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J Electrochem Soc 158(2):A74–A82

    Article  CAS  Google Scholar 

  34. Chen Z, Lu WQ, Liu J, Amine K (2006) LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochim Acta 51(16):3322–3326

    Article  CAS  Google Scholar 

  35. de Freitas JN, Nogueira AF, De Paoli MA (2009) New insights into dye-sensitized solar cells with polymer electrolytes. J Mater Chem 19:5279–5294

    Article  Google Scholar 

  36. Cheng H, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794

    Article  CAS  Google Scholar 

  37. Chaurasia SK, Singh RK, Chandra S (2011) Ion–polymer and ion–ion interaction in PEO-based polymer electrolytes having complexing salt LiClO4 and/or ionic liquid, [BMIM][PF6]. J Raman Spectrosc 42:2168–2172

    Article  CAS  Google Scholar 

  38. Tian X, Jiang X, Zhu B, Xu Y (2006) Effect of the casting solvent on the crystal characteristics and pervaporative separation performances of P(VDF-co-HFP) membranes. J Membr Sci 279:479–486

    Article  CAS  Google Scholar 

  39. Rao SS, Reddy MJ, Narsaiah EL, Rao S (1995) Development of electrochemical cells based on (PEO + NaYF4) and (PEO + KYF4) polymer electrolytes. J Mater Sci Eng B 33:173–177

    Article  Google Scholar 

  40. Shalu, Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVDF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3:7305–7318

    Article  CAS  Google Scholar 

  41. Manning JP, Frech CB, Fun BM, Frech RE (1991) Multinuclear nuclear magnetic resonance relaxation investigations of poly(propylene oxide) complexed with sodium trifluoromethanesulphonate. Polymer 32:2939–2946

    Article  CAS  Google Scholar 

  42. Fan L, Nan CW, Zhao S (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164:81–86

    Article  CAS  Google Scholar 

  43. Stoeva Z, Martin-Litas I, Staunton E, Andreev YG, Bruce PG (2003) Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As. Sb J Am Chem Soc 125:4619–4626

    Article  CAS  Google Scholar 

  44. Chandra A, Chandra A, Thakur K (2016) Synthesis and ion conduction mechanism on hot-pressed sodium ion conducting nanocomposite polymer electrolytes. Arab J Chem 9:400–407

    Article  CAS  Google Scholar 

  45. Moreno JS, Armand M, Berman MB, Greenbaum GS, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702

    Article  Google Scholar 

  46. Hasa I, Passerini S, Hassoun J (2016) Characteristics of an ionic liquid electrolyte for sodium-ion batteries. J Power Sources 303:203–207

    Article  CAS  Google Scholar 

  47. Ghosh A, Wang C, Kofinas P (2010) PMMA–LiBOB gel electrolyte for application in lithium ion batteries. J Electrochem Soc 157:846

    Article  Google Scholar 

  48. Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186

    Article  CAS  Google Scholar 

  49. Croce F, Settimi L, Scrosati B (2006) Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun 8:364–368

    Article  CAS  Google Scholar 

  50. Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M (2009) Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J Power Sources 194:486–493

    Article  CAS  Google Scholar 

  51. Kim J-K, Mueller F, Kim H, Jeong S, Park J-S, Passerini S, Kim Y (2016) Eco-friendly energy storage system: seawater and ionic liquid electrolyte. ChemSusChem 9:42–49

    Article  CAS  Google Scholar 

  52. Togasaki N, Momma T, Osaka T (2016) Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery. J Power Sources 307:98–104

    Article  CAS  Google Scholar 

  53. Li Q, Ardebili H (2016) Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J Power Sources 303:17–21

    Article  Google Scholar 

  54. Navarra MA, Manzi J, Lombardo L, Panero S, Scrosati B (2011) Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. ChemSusChem 4:125–130

    Article  CAS  Google Scholar 

  55. Khan RNN, Mahmood N, Lv C, Sima G, Zhang J, Hao J, Hou Y, Wei Y (2014) Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. RSC Adv 4:7374

    Article  Google Scholar 

  56. Varzi A, Ramirez-Castro C, Balducci A, Passerini S (2015) Performance and kinetics of LiFePO4–carbon bi-material electrodes for hybrid devices: a comparative study between activated carbon and multi-walled carbon nanotubes. J Power Sources 273:1016–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of us, R.K.S., is grateful to DST, New Delhi, and BRNS-DAE, Mumbai India, for the financial assistance. V.K.S. is thankful to the Department of Science and Technology, New Delhi for providing the JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Shalu, Balo, L. et al. Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 21, 1713–1723 (2017). https://doi.org/10.1007/s10008-017-3529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3529-z

Keywords

Navigation