Skip to main content

Advertisement

Log in

Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured molybdenum trioxide (α-MoO3) thin films were deposited to investigate effect of substrate temperature on microstructural, morphological, optical, electrical, and electrochemical properties of the α-MoO3 thin films. X-ray diffraction results indicated deposited α-MoO3 thin films are polycrystalline, crystallizes in orthorhombic structure, and crystalline quality improved with substrate temperature. Films show the optical band gap varied between 2.56 and 2.85 eV, the activation energy of the α-MoO3 thin films were found to be in the range of 0.15–0.30 eV. The measured electrochemical properties of α-MoO3 thin film electrode deposited at 673 K exhibits significantly improved supercapacitive performance in Na2SO4 (0.5 M) electrolyte about 73.61 F/g at current density 0.6 mA/cm2 than the other deposition temperatures. The maximum energy density (11.13 Wh/kg) at the power density 10.54 kW/kg was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sayede A, Amriou T, Pernisek M, Khelifa B, Mathieu C (2005) An ab initio LAPW study of the α and β phases of bulk molybdenum trioxide, MoO3. Chem Phys 316:72–82

    Article  CAS  Google Scholar 

  2. Rahmani MB, Keshmiri SH, Yu J, Sadek AZ, Al-Mashat L, Moafi A, Latham K, Li YX, Wlodarski W, Kalantar-zadeh K (2010) Gas sensing properties of thermally evaporated lamellar MoO3. Sensors Actuators B 145:13–19

    Article  CAS  Google Scholar 

  3. Wang H, Lin J, Shen ZX (2006) Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices 1:225–255

    Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Yang P, Sun P, Mai W, (2016) Electrochromic energy storage devices 19:394–402

  6. Subramanian V, ZhuH VR, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  7. Perera SD, Patel BN, Nijem K, Roodenko O, Seitz JP, Ferreris YJ (2011) Vanadium oxide nanowire–carbon nanotube binder-free flexible electrodes for supercapacitors. Adv Energy Mater 1:936–945

    Article  CAS  Google Scholar 

  8. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  9. Chen P, Chen H, Qiu J, Zhou C (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3:594–603

    Article  CAS  Google Scholar 

  10. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654

    Article  CAS  Google Scholar 

  11. Kim S, Lee J, Ahn H, Song H, Jang J (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5:1596–1603

    Article  CAS  Google Scholar 

  12. Tao T, Glushenkov AM, Zhang C, Zhang H, Zhou D, Guo Z, Liu HK, Chen Q, Hub H, Chen Y (2011) MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. J Mater Chem 21:9350–9355

    Article  CAS  Google Scholar 

  13. Shen Y, Xiao Y, Yan P, Yang Y, Hu F, Li Z (2014) Hydrothermal deposition and the photochromic properties of molybdenum oxide hydrate (MoO3(H2O)0.69) films induced by D, L-malic acid. J Alloys Compd 588:676–680

    Article  CAS  Google Scholar 

  14. Cho YH, Ko YN, Kang YC, Kim ID, Lee JH (2014) Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis. Sensors Actuators B 195:189–196

    Article  CAS  Google Scholar 

  15. Osterwald C, Cheek G, DuBow JB (1979) Molybdenum trioxide (MoO3)/silicon photodiodes. Appl Phys Lett 35:775–776

    Article  CAS  Google Scholar 

  16. Wang Y, Zhu Y, Xing Z, Qian Y (2013) Hydrothermal synthesis of α-MoO3 and the influence of later heat treatment on its electrochemical properties. Int J Electrochem Sci 8:9851–9857

    CAS  Google Scholar 

  17. Ferroni M, Guidi V, Martinelli G, Sacerdoti M, Nelli P, Sberveglieri G (1998) MoO3-based sputtered thin films for fast NO2 detection. Sensors Actuators B 48:285–288

    Article  CAS  Google Scholar 

  18. Diskus M, Nilsen O, Fjellvag H (2011) Growth of thin films of molybdenum oxide by atomic layer deposition. J Mater Chem 21:705–710

    Article  CAS  Google Scholar 

  19. Dhanasankar M, Purushothaman KK, Muralidharan G (2010) Optical, structural and electrochromic studies of molybdenum oxide thin films with nanorod structure. Solid State Sci 12:246–251

    Article  CAS  Google Scholar 

  20. Ivanova T, Surtchev M, Geshevam K (2002) Investigation of CVD molybdenum oxide films. Mater Lett 53:250–257

    Article  CAS  Google Scholar 

  21. Guerrero R, Vargas-Garcia JR, Santes V, Gomez E (2007) Preparation of molybdenum oxide thin films by MOCVD. J Alloys Compd 434-435:701–703

    Article  CAS  Google Scholar 

  22. Altaman E, Droubay T, Chambers S (2002) Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 414:205–211

    Article  Google Scholar 

  23. Boudaoud L, Benramdane N, Desfeux R, Khelifa B, Mathieu C (2006) Structural and optical properties of MoO3 and V2O5 thin films prepared by spray pyrolysis. Catal Today 113:230–234

    Article  CAS  Google Scholar 

  24. Sethupathi N, Thirunavukkarasu P, Vidhya VS, Thangamuthu R, Kiruthika GVM, Perumal K, Bajaj HC, Jayachandran M (2012) Deposition and optoelectronic properties of ITO (In2O3:Sn) thin films by jet nebulizer spray (JNS) pyrolysis technique. J Mater Sci-Mater Electron 23:1087–1093

    Article  CAS  Google Scholar 

  25. Bouzidi A, Benramdane N, Tabet-Derraz H, Mathieu C, Khelifa B, Desfeux R (2003) Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. Mater Sci Eng B 97:5–8

    Article  Google Scholar 

  26. Jeyprakash B, Kesavan K, Ashok Kumar R, Mohan S, Amalarani A (2011) Temperature dependent grain-size and microstrain of CdO thin films prepared by spray pyrolysis method. Bull Mater Sci 34:601–605

    Article  Google Scholar 

  27. Deokate R, Bhosale C, Rajpure K (2009) Synthesis and characterization of CdIn2O4 thin films by spray pyrolysis technique. J Alloys Compd 473:L20–L24

    Article  CAS  Google Scholar 

  28. Deokate R, Adsool A, Shinde N, Pawar S, Lokhande C (2014) Structural and optical properties of spray-deposited Cu2ZnSnS4 thin films. Energy Procedia 54:627–633

    Article  CAS  Google Scholar 

  29. JCPDS data card: 01–0706

  30. Mai L, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang ZL (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19:3712–3716

    Article  CAS  Google Scholar 

  31. Scherrer P (1918) Gottinger Nachrichten 2:98–100

    Google Scholar 

  32. Buckley H (1951) Crystal growth. John Wiley & Sons, New York

    Google Scholar 

  33. Turgut G, Keskenler EF, Aydın S, Doğan S, Duman S, Özçelik Ş, Gürbulak B, Esen B (2014) Fabrication and characterization of Al/Cu2ZnSnS4/n-Si/Al heterojunction photodiodes. Phys Status Solidi A 211:580–586

    Article  CAS  Google Scholar 

  34. Suresh R, Ponnuswamy V, Mariappan R, Senthilkumar N (2014) Influence of substrate temperature on the properties of CeO2 thin films by simple nebulizer spray pyrolysis technique. Ceram Int 40:437–445

    Article  CAS  Google Scholar 

  35. He J, Sun L, Zhang K, Wang W, Jiang J, Chen Y, Yang P, Chu J (2013) Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl Surf Sci 264:133–138

    Article  CAS  Google Scholar 

  36. Moses Ezhil Raj A, Lalithambika K, Vidhya V, Rajagopal G, Thayumanavan A, Jayachandran M, Sanjeeviraja C (2008) Growth mechanism and optoelectronic properties of nanocrystalline In2O3 films prepared by chemical spray pyrolysis of metal-organic precursor. Physica B 403:544–554

    Article  CAS  Google Scholar 

  37. Agashe C, Takwale M, Marathe B, Bhide V (1988) Structural properties of SnO2: F films deposited by spray pyrolysis. Solar Energy Mater 17:99–117

    Article  CAS  Google Scholar 

  38. Bareet C, Massalski T (1980) Structure of metals. Pergaron Press, Oxford, p 1923

    Google Scholar 

  39. Kireev P (1975) La Physique des semiconducteurs. Mir, Moscou

    Google Scholar 

  40. Boudaoud L, Benramdane N, Bouzidi A, Nekerala A, Desfeux R (2016) (MoO3)1− x(V2O5)x thin films: elaboration and characterization. Optik 127:852–854

    Article  CAS  Google Scholar 

  41. Welber B, Cardona M, Kim C, Rodriguez S (1975) Dependence of the direct energy gap of GaAs on hydrostatic pressure. Physics Review B 12:5729–5738

    Article  CAS  Google Scholar 

  42. Ghahramani E, Sipe J (1989) Pressure dependence of the band gaps of semiconductors. Physics Review B 40:12516–12519

    Article  CAS  Google Scholar 

  43. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  44. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  CAS  Google Scholar 

  45. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  46. Patil SJ, Kumbhar VS, Patil BH, Bulakhe RN, Lokhande CD (2014) Chemical synthesis of α-La2S3 thin film as an advanced electrode material for supercapacitor application. J Alloys Compd 611:191–196

    Article  CAS  Google Scholar 

  47. Xiao K, Xia L, Liu G, Wang S, Ding L, Wang H (2013) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A. doi:10.1039/C5TA00258C

    Google Scholar 

  48. Li D, Liu Y, Lin B, Lai C, Sun Y, Yang H, Zhang X (2015) Synthesis of ternary graphene/molybdenum oxide/poly(p-phenylenediamine) nanocomposites for symmetric supercapacitors. RSC Adv 5:98278–98287

    Article  CAS  Google Scholar 

  49. Sarfraz M, Aboud MFA, Shakir I (2015) Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte. J Alloys Compd 650:123–126

    Article  CAS  Google Scholar 

  50. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York, NY

    Book  Google Scholar 

  51. Salunkhe RR, Lin J, Malgras V, Dou SX, Kim J, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    Article  CAS  Google Scholar 

  52. Han P, Ma W, Pang S, Kong Q, Yao J, Bi C, Cui G (2013) Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte. J Mater Chem A 1:5949–5954

    Article  CAS  Google Scholar 

  53. Deokate RJ, Kalubarme RS, Park CJ, Lokhande CD (2017) Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim Acta 224:378–385

    Article  CAS  Google Scholar 

  54. Zheng L, Xu Y, Jin D, Xie Y (2010) Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application. J Mater Chem 20:7135–7143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. R. J. Deokate is thankful to the Science and Engineering Research Board, Department of Science and Technology (SB/FTP/PS-079/2014), New Delhi, India, for the financial support through the project under the SERC Fast Track Scheme for Young Scientist (File No. SB/FTP/PS-079/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Deokate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalate, S.A., Kate, R.S., Pathan, H.M. et al. Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin films. J Solid State Electrochem 21, 2737–2746 (2017). https://doi.org/10.1007/s10008-017-3540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3540-4

Keywords

Navigation