Skip to main content
Log in

Ultra-high surface area and mesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A nitrogen (N)-doped mesoporous carbon material exhibiting ultra-high surface area was successfully synthesized from sheep bones via a facile and low-cost method. The obtained carbon material had an ultra-high specific surface area of 1961 m2 g−1 and provided rich active sites for the oxygen reduction reaction (ORR), which in turn resulted in high electrocatalytic activity. It was found that the pore size distribution for the newly prepared carbonaceous material fell in the range of 1–4 nm. Benefiting from its high surface area and the presence of pyridine-N and quaternary-N species, the as-prepared carbon material exhibited excellent ORR activity in an oxygen-saturated 0.1 M KOH solution, compared to commercial Pt/C (10 wt%). Due to its high ORR catalytic activity, stability and low-cost, using sheep bone as C and N precursors to produce N-doped carbon provides an encouraging step toward the goal of replacing commercial Pt/C as fuel cell cathode electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S (2011) High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ Sci 4(3):760–764

    Article  CAS  Google Scholar 

  2. Yang M, Van Wassen AR, Guarecuco R, Abruna HD, DiSalvo FJ (2013) Nano-structured ternary niobium titanium nitrides as durable non-carbon supports for oxygen reduction reaction. Chem Commun 49(92):10853–10855

    Article  CAS  Google Scholar 

  3. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  4. Wang R, Wang K, Wang H, Wang Q, Key J, Linkov V, Ji S (2013) Nitrogen-doped carbon coated ZrO2 as a support for Pt nanoparticles in the oxygen reduction reaction. Int J Hydrog Energy 38(14):5783–5788

    Article  CAS  Google Scholar 

  5. Huang L, Han Y, Dong S (2016) Highly-branched mesoporous Au-Pd-Pt trimetallic nanoflowers blooming on reduced graphene oxide as oxygen reduction electrocatalyst. Chem Commun 52:8659–8662

    Article  CAS  Google Scholar 

  6. Zhang Z, Li H, Yang Y, Key J, Ji S, Ma Y, Wang H, Wang R (2015) Cow dung-derived nitrogen-doped carbon as a cost effective, high activity, oxygen reduction electrocatalyst. RSC Adv 5(34):27112–27119

    Article  CAS  Google Scholar 

  7. Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523

    Article  CAS  Google Scholar 

  8. Toh RJ, Eng AYS, Sofer Z, Sedmidubsky D, Pumera M (2015) Ternary transition metal oxide nanoparticles with spinel structure for the oxygen reduction reaction. Chem Electro Chem 2(7):982–987

    CAS  Google Scholar 

  9. Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  CAS  Google Scholar 

  10. Lin Z, Waller GH, Liu Y, Liu M, C-p W (2013) 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2(2):241–248

    Article  CAS  Google Scholar 

  11. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 123(31):7270–7273

    Article  Google Scholar 

  12. Liu S-H, Wu M-T, Lai Y-H, Chiang C-C, Yu N, Liu S-B (2011) Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction. J Mater Chem A 21(33):12489–12496

    Article  CAS  Google Scholar 

  13. Han W-Q, Kohler-Redlich P, Seeger T, Ernst F, Rühle M, Grobert N, Hsu W-K, Chang B-H, Zhu Y-Q, Kroto HW, Walton DRM, Terrones M, Terrones H (2000) Aligned CN[sub x] nanotubes by pyrolysis of ferrocene/C[sub 60] under NH[sub 3] atmosphere. Appl Phys Lett 77(12):1807

    Article  CAS  Google Scholar 

  14. Nath M, Satishkumar BC, Govindaraj A, Vinod CP, Rao CNR (2000) Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem Phys Lett 322(5):333–340

    Article  CAS  Google Scholar 

  15. Yang Z, Xia Y, Mokaya R (2005) Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates. Chem Mater 17(17):4502–4508

    Article  CAS  Google Scholar 

  16. Liu R, Wu D, Feng X, Müllen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed 122(14):2619–2623

    Article  Google Scholar 

  17. Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y (2012) Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134(41):16987–16990

    Article  CAS  Google Scholar 

  18. Liu G, Li X, Ganesan P, Popov BN (2009) Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B Environ 93(1–2):156–165

    Article  CAS  Google Scholar 

  19. Kim ND, Kim W, Joo JB, Oh S, Kim P, Kim Y, Yi J (2008) Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J Power Sources 180(1):671–675

    Article  CAS  Google Scholar 

  20. Yang Q-H, Hou P-X, Unno M, Yamauchi S, Saito R, Kyotani T (2005) Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped Multiwalls. Nano Lett 5(12):2465–2469

    Article  CAS  Google Scholar 

  21. Chen Z, Higgins D, Tao H, Hsu RS, Chen Z (2009) Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J Phys Chem C 113(49):21008–21013

    Article  CAS  Google Scholar 

  22. He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50(13):4911–4921

    Article  CAS  Google Scholar 

  23. Zhou T, Wang H, Ji S, Linkov V, Wang R (2014) Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. J Power Sources 248:427–433

    Article  CAS  Google Scholar 

  24. Wang H, Zhang X, Wang R, Ji S, Wang W, Wang Q, Lei Z (2011) Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation. J Power Sources 196(19):8000–8003

    Article  CAS  Google Scholar 

  25. Ma Y, Zhao J, Zhang L, Zhao Y, Fan Q, Li Xa HZ, Huang W (2011) The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction. Carbon 49(15):5292–5297

    Article  CAS  Google Scholar 

  26. Lu J, Bo X, Wang H, Guo L (2013) Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochim Acta 108:10–16

    Article  CAS  Google Scholar 

  27. Wang R, Wang K, Wang Z, Song H, Wang H, Ji S (2015) Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. J Power Sources 297:295–301

    Article  CAS  Google Scholar 

  28. Zhang J, Wu S, Chen X, Pan M, Mu S (2014) Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction. J Power Sources 271:522–529

    Article  CAS  Google Scholar 

  29. Wang H, Wang K, Song H, Li H, Ji S, Wang Z, Li S, Wang R (2015) N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Adv 5(60):48965–48970

    Article  CAS  Google Scholar 

  30. Zhu H, Yin J, Wang X, Wang H, Yang X (2013) Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv Func Mater 23(10):1305–1312

    Article  CAS  Google Scholar 

  31. Song H, Li H, Wang H, Key J, Ji S, Mao X, Wang R (2014) Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochim Acta 147:520–526

    Article  CAS  Google Scholar 

  32. Liu F, Peng H, Qiao X, Fu Z, Huang P, Liao S (2014) High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. Int J Hydrog Energy 39(19):10128–10134

    Article  CAS  Google Scholar 

  33. Wang K, Wang H, Ji S, Feng H, Linkov V, Wang R (2013) Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction. RSC Adv 3(30):12039

    Article  CAS  Google Scholar 

  34. Zhang Z, Li H, Yang Y, Key J, Ji S, Ma Y, Wang H, Wang R (2015) Cow dung-derived nitrogen-doped carbon as a cost effective, high activity, oxygen reduction electrocatalyst. RSC Adv 5(34):27112–27119

    Article  CAS  Google Scholar 

  35. Wang R, Wang H, Zhou T, Key J, Ma Y, Zhang Z, Wang Q, Ji S (2015) The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. J Power Sources 274:741–747

    Article  CAS  Google Scholar 

  36. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133(50):20116–20119

    Article  CAS  Google Scholar 

  37. Wen Z, Ci S, Zhang F, Feng X, Cui S, Mao S, Luo S, He Z, Chen J (2012) Nitrogen-enriched core-shell structured Fe/Fe(3)C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv Mater 24(11):1399–1404

    Article  CAS  Google Scholar 

  38. Wan K, Yu Z, Li X, Liu M, Yang G, Piao J, Liang Z (2015) pH effect on electrochemistry of nitrogen-doped carbon catalyst for oxygen reduction reaction. ACS Catal 5:4325–4332

    Article  CAS  Google Scholar 

  39. Kang J, Wang H, Ji S, Key J, Wang R (2014) Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J Power Sources 251 (0):363–369.

  40. Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources 280:526–532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Youth Fund Promotion Plan of Northwest Normal University (NWNU-LKQN-14-20) and National Natural Science Foundation of China (21363022 and 51362027), Shenzhen Innovation Program JCYJ20140418095735600 for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Ji or Rongfang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xu, R., Wang, H. et al. Ultra-high surface area and mesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J Solid State Electrochem 21, 2947–2954 (2017). https://doi.org/10.1007/s10008-017-3630-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3630-3

Keywords

Navigation