Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The efficient utilization of natural biomass as renewable raw materials is of importance. We herein prepared porous carbon fibers (PCFs) by activation of the extracted cellulose microfibers from the agriculture byproduct of corn straw. Different from the porous carbons (PCs) by directly activating straw, the obtained PCFs had typical one-dimensional morphology with high surface area (2013 m2 g−1) and large pore volume (1.27 cm3 g−1). The influence of the ZnCl2/cellulose mass ratio on the electrochemical performance was studied, and the optimized PCF(1:1) possessed a much higher specific capacitance than the PC(1:1) sample, which was attributed to the improved specific surface area as well as the fiber-like morphology where it had short ion diffusion route and small interfacial resistance in comparison to PCs. PCFs have a high specific capacitance of 230 F g−1 at 0.5 A g−1, and 183 F g−1 was retained at 20 A g−1 (79.6%), revealing an excellent rate capability. The assembled symmetrical supercapacitor exhibited a wide potential window of 1.8 V, small electrochemical impedance, and superior cycle performance. Moreover, a high energy density of 16.0 Wh kg−1 was obtained at a power density of 450.4 W kg−1, which was preserved of 6.9 Wh kg−1 at a high power density of 14,194.3 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Dyatkin B, Presser V, Heon M, Lukatskaya MR, Beidaghi M, Gogotsi Y (2013) Development of a green supercapacitor composed entirely of environmentally friendly materials. ChemSusChem 6:2269–2280

    Article  CAS  Google Scholar 

  4. Han S, Wu D, Li S, Zhang F, Feng X (2014) Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 26:849–864

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52:4764–4767

    Article  CAS  Google Scholar 

  7. Tang J, Yamauchi Y (2016) Carbon materials: MOF morphologies in control. Nat Chem 8:638–639

    Article  CAS  Google Scholar 

  8. Young C, Salunkhe RR, Tang J, Hu CC, Shahabuddin M, Yanmaz E, Hossain MSA, Yamauchi Y, Kim JH (2016) Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys Chem Chem Phys 18:29308–29315

    Article  CAS  Google Scholar 

  9. Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem Euro J 20:7895–7900

    Article  CAS  Google Scholar 

  10. Li M, Liu C, Cao H, Zhao H, Zhang Y, Fan Z (2014) KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. J Mater Chem A 2:14844–14851

    Article  CAS  Google Scholar 

  11. Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24:4197–4202

    Article  CAS  Google Scholar 

  12. Cao CY, Guo W, Cui ZM, Song WG, Cai W (2011) Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J Mater Chem 21:3204–3209

    Article  CAS  Google Scholar 

  13. Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Interfaces 6:1773–1780

    Article  CAS  Google Scholar 

  14. Dong X, Wang X, Wang J, Song H, Li X, Wang L, Chan-Park MB, Li CM, Chen P (2012) Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 50:4865–4870

    Article  CAS  Google Scholar 

  15. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51:9994–10024

    Article  CAS  Google Scholar 

  16. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  17. Borchardt L, Oschatz M, Kaskel S (2014) Tailoring porosity in carbon materials for supercapacitor applications. Mater Horiz 1:157–168

    Article  CAS  Google Scholar 

  18. Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532–19535

    Article  CAS  Google Scholar 

  19. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  CAS  Google Scholar 

  20. Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200

    Article  CAS  Google Scholar 

  21. Shao M, Ning F, Zhao Y, Zhao J, Wei M, Evans DG, Duan X (2012) Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem Mater 24:1192–1197

    Article  CAS  Google Scholar 

  22. Barranco V, Lillo-Rodenas MA, Linares-Solano A, Oya A, Pico F, Ibañez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J Phys Chem C 114:10302–10307

    Article  CAS  Google Scholar 

  23. Wang Y, Xuan H, Lin G, Wang F, Chen Z, Dong X (2016) A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application. J Power Sources 319:262–270

    Article  CAS  Google Scholar 

  24. Li L, Song H, Zhang Q, Yao J, Chen X (2009) Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J Power Sources 187:268–274

    Article  CAS  Google Scholar 

  25. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    Article  CAS  Google Scholar 

  26. Li D, Kaner RB (2008) Graphene-based materials. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  27. Marco-Lozar JP, Juan-Juan J, Suárez-García F, Cazorla-Amorós D, Linares-Solano A (2012) MOF-5 and activated carbons as adsorbents for gas storage. Int J Hydrog Energy 37:2370–2381

    Article  CAS  Google Scholar 

  28. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  29. Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Article  Google Scholar 

  30. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259

    Article  CAS  Google Scholar 

  31. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  32. He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50:4911–4921

    Article  CAS  Google Scholar 

  33. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sust Energ Rev 52:1282–1293

    Article  CAS  Google Scholar 

  34. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    Article  CAS  Google Scholar 

  35. Luan Y, Wang L, Guo S, Jiang B, Zhao D, Yan H, Tian C, Fu H (2015) A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv 5:42430–42437

    Article  CAS  Google Scholar 

  36. Li J, Wu Q (2015) Water bamboo-derived porous carbons as electrode materials for supercapacitors. New J Chem 39:3859–3864

    Article  CAS  Google Scholar 

  37. Ahmedna M, Marshall WE, Rao RM (2000) Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour Technol 71:113–123

    Article  CAS  Google Scholar 

  38. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H (2013) Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 6:880–889

    Article  CAS  Google Scholar 

  39. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G (2015) Surface and porous characterization of activated carbon prepared from pyrolysis of biomass (rice straw) by two-stage procedure and its applications in supercapacitor electrodes. J Mater Cycles Waste Manage 17:736–747

    Article  CAS  Google Scholar 

  40. Chen M, Kang X, Wumaier T, Dou J, Gao B, Han Y, Xu G, Liu Z, Zhang L (2013) Preparation of activated carbon from cotton stalk and its application in supercapacitor. J Solid State Electrochem 17:1005–1012

    Article  CAS  Google Scholar 

  41. Xie Q, Zheng A, Zhai S, Wu S, Xie C, Zhang Y, Guan Y (2016) Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors. J Solid State Electrochem 20:449–457

    Article  CAS  Google Scholar 

  42. Ma G, Hua F, Sun K, Zhang Z, Feng E, Peng H, Lei Z (2016) Porous carbon derived from sorghum stalk for symmetric supercapacitors. RSC Adv 6:103508–103516

    Article  CAS  Google Scholar 

  43. Wang Y, Chang B, Guan D, Dong X (2015) Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J Solid State Electrochem 19:1783–1791

    Article  CAS  Google Scholar 

  44. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  45. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  46. Chen M, Xuan H, Zheng X, Liu J, Dong X, Xi F (2017) N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance. Electrochim Acta 238:269–277

    Article  CAS  Google Scholar 

  47. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC (2007) Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv Mater 19:2341–2346

    Article  CAS  Google Scholar 

  48. Chang B, Wang Y, Pei K, Yang S, Dong X (2014) ZnCl2-activated porous carbon spheres with high surface area and superior mesoporous structure as an efficient supercapacitor electrode. RSC Adv 4:40546–40552

    Article  CAS  Google Scholar 

  49. Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun 60:21–25

    Article  Google Scholar 

  50. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  51. He W, Lu L (2012) Revisiting the structure of graphene oxide for preparing new-style graphene-based ultraviolet absorbers. Adv Funct Mater 22:2542–2549

    Article  CAS  Google Scholar 

  52. Liu Y, Wang Y, Zhang G, Liu W, Wang D, Dong Y (2016) Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater Lett 176:60–63

    Article  CAS  Google Scholar 

  53. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  54. Ma G, Li J, Sun K, Peng H, Feng E, Lei Z (2017) Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J Solid State Electrochem 21:525–535

    Article  CAS  Google Scholar 

  55. Yang X, Li C, Chen Y (2017) Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application. J Phys D Appl Phys 50:055501

    Article  Google Scholar 

  56. Wang C, Liu T (2017) Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. J Alloys Compd 696:42–50

    Article  Google Scholar 

  57. Ma F, Wan J, Wu G, Zhao H (2015) Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Adv 5:44416–44422

    Article  CAS  Google Scholar 

  58. He X, Li R, Han J, Yu M, Wu M (2013) Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater Lett 94:158–160

    Article  CAS  Google Scholar 

  59. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  60. Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616

    Article  CAS  Google Scholar 

  61. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  Google Scholar 

  62. Xuan H, Lin G, Wang F, Liu J, Dong X, Xi F (2017) Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor. J Solid State Electrochem. doi:10.1007/s10008-017-3562-y

    Article  CAS  Google Scholar 

  63. Nagarajan S, Subramani K, Karnan M, Ilayaraja N, Sathish M (2017) Biomass-derived activated porous carbon from rice straw for high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energ Fuel 31:977–985

    Article  Google Scholar 

  64. Liu MC, Kong LB, Zhang P, Luo YC, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448

    Article  CAS  Google Scholar 

  65. Garcia-Gomez A, Miles P, Centeno TA, Rojo JM (2010) Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochim Acta 55:8539–8544

    Article  CAS  Google Scholar 

  66. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49:905–912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17B010004) and the 521 talent project of ZSTU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Dong or Jiyang Liu.

Electronic supplementary material

ESM 1

(DOC 2421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Chen, M., Ma, Y. et al. Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor. J Solid State Electrochem 21, 3449–3458 (2017). https://doi.org/10.1007/s10008-017-3689-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3689-x

Keywords

Navigation