Skip to main content
Log in

Enhanced electrochemical performance of LSCF cathode through selection of optimum fabrication parameters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the effect of three key fabrication parameters (thickness, solid content, and sintering temperature) on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. Single-phase, high specific surface area of 12.2 m2/g and nano-sized LSCF cathode powder was synthesized by microwave-assisted glycine-nitrate process (GNP). The as-prepared powder was characterized by X-ray diffraction, nitrogen adsorption, and high-resolution electron microscopy techniques. A terpineol-based ink vehicle was used to prepare the LSCF cathode ink for screen printing. The effects of thickness, LSCF solid content, and sintering temperature on morphological and electrochemical characteristics were systematically investigated using scanning electron microscopy and impedance spectroscopy. The thickness, solid content, and sintering temperature are essential in determining the polarization resistance of mixed ionic electronic conducting (MIEC) LSCF cathode material. The cathode polarization resistance of LSCF is 0.272, 0.116, 0.063, 0.039, and 0.029 Ω cm2 at 600, 650, 700, 750, and 800 °C under the optimal preparation parameters, respectively. The preferred sintering temperature for LSCF cathode prepared through microwave-assisted GNP was 1100 °C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mahmud LS, Muchtar A, Somalu MR (2017) Challenges in fabricating planar solid oxide fuel cells: a review. Renew Sust Energ Rev 72:105–116

    Article  CAS  Google Scholar 

  2. Hussain AM, Pan K-J, Robinson IA et al (2016) Stannate-based ceramic oxide as anode materials for oxide-ion conducting low-temperature solid oxide fuel cells. J Electrochem Soc 163:F1198–F1205

    Article  CAS  Google Scholar 

  3. Marinha D, Hayd J, Dessemond L et al (2011) Performance of (La,Sr)(Co,Fe)O3-x double-layer cathode films for intermediate temperature solid oxide fuel cell. J Power Sources 196:5084–5090

    Article  CAS  Google Scholar 

  4. Richardson RA, Cotton JW, Mark Ormerod R (2004) Influence of synthesis route on the properties of doped lanthanum cobaltite and its performance as an electrochemical reactor for the partial oxidation of natural gas. Dalton Trans 19:3110–3115

  5. Luyten J, Buekenhoudt A, Adriansens W et al (2000) Preparation of LaSrCoFeO3-x membranes. Solid State Ionics 135:637–642

    Article  CAS  Google Scholar 

  6. Hsu C-S, Hwang B-H (2006) Microstructure and properties of the La0.6Sr0.4Co0.2Fe0.8O3 cathodes prepared by electrostatic-assisted ultrasonic spray pyrolysis method. J Electrochem Soc 153:A1478

    Article  CAS  Google Scholar 

  7. Ghouse M, Al-Yousef Y, Al-Musa A, Al-Otaibi MF (2010) Preparation of La0.6Sr0.4Co0.2Fe 0.8O3 nanoceramic cathode powders for solid oxide fuel cell (SOFC) application. Int J Hydrog Energy 35:9411–9419

    Article  CAS  Google Scholar 

  8. Leng Y, Chan SH, Liu Q (2008) Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Int J Hydrogen Energy 33:3808–3817

    Article  CAS  Google Scholar 

  9. Ge L, Zhou W, Ran R et al (2008) Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3- δ (LSCF) perovskite via a modified complexing sol-gel process with NH4NO3 as combustion aid. J Alloys Compd 450:338–347

    Article  CAS  Google Scholar 

  10. Mostafavi E, Babaei A, Ataie A (2015) Synthesis of nano-structured La0.6Sr0.4Co0.2Fe0.8O3 perovskite by co-precipitation method. J Ultrafine Grained Nanostructured Mater 48:45–52

    Google Scholar 

  11. Jamale AP, Shanmugam S, Bhosale CH, Jadhav LD (2015) Physiochemical properties of combustion synthesized La0.6Sr0.4Co0.8Fe0.2O3-δ perovskite: a role of fuel to oxidant ratio. Mater Sci Semicond Process 40:855–860

    Article  CAS  Google Scholar 

  12. Kim Y-M, Baek S-W, Bae J, Yoo Y-S (2011) Effect of calcination temperature on electrochemical properties of cathodes for solid oxide fuel cells. Solid State Ionics 192:595–598

    Article  CAS  Google Scholar 

  13. Rosa R, Veronesi P, Leonelli C (2013) A review on combustion synthesis intensification by means of microwave energy. Chem Eng Process Process Intensif 71:2–18

    Article  CAS  Google Scholar 

  14. Ganesh I, Johnson R, Rao GVN et al (2005) Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram Int 31:67–74

    Article  CAS  Google Scholar 

  15. Cesário MR, MacEdo DA, Martinelli AE et al (2012) Synthesis, structure and electrochemical performance of cobaltite-based composite cathodes for IT-SOFC. Cryst Res Technol 47:723–730

    Article  Google Scholar 

  16. Nuernberg RB, Morelli MR (2016) Synthesis of BSCF perovskites using a microwave-assisted combustion method. Ceram Int 42:4204–4211

    Article  CAS  Google Scholar 

  17. Nie L, Liu Z, Liu M et al (2010) (LSCF) cathodes with graded microstructure fabricated by tape casting. J Electrochem Sci Technol 1:50–56

    Article  CAS  Google Scholar 

  18. da Conceição L, Silva AM, Ribeiro NFP, Souza MMVM (2011) Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC. Mater Res Bull 46:308–314

    Article  Google Scholar 

  19. Liu Z, Han MF, Miao WT (2007) Preparation and characterization of graded cathode La0.6Sr0.4Co0.2Fe0.8O3-δ. J Power Sources 173:837–841

    Article  CAS  Google Scholar 

  20. Han GD, Neoh KC, Bae K et al (2016) Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer. J Power Sources 306:503–509

    Article  CAS  Google Scholar 

  21. Muhammed Ali SA, Anwar M, Somalu MR, Muchtar A (2017) Enhancement of the interfacial polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode by microwave-assisted combustion method. Ceram Int 43:4647–4654

    Article  CAS  Google Scholar 

  22. Muhammed Ali SA, Muchtar A, Bakar Sulong A et al (2013) Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceram Int 39:5813–5820

    Article  CAS  Google Scholar 

  23. Richter J, Holtappels P, Graule T et al (2009) Materials design for perovskite SOFC cathodes. Monatshefte fur Chemie 140:985–999

    Article  CAS  Google Scholar 

  24. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes †. Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  25. Xiong C, Taillon JA, Pellegrinelli C et al (2016) Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures. J Electrochem Soc 163:F1091–F1099

    Article  CAS  Google Scholar 

  26. Lu Z, Hardy J, Templeton J, Stevenson J (2012) Extended reaction zone of La0.6 Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell. J Power Sources 198:90–94

    Article  CAS  Google Scholar 

  27. Nielsen J, Hjelm J (2014) Impedance of SOFC electrodes: a review and a comprehensive case study on the impedance of LSM:YSZ cathodes. Electrochim Acta 115:31–45

    Article  CAS  Google Scholar 

  28. Perry Murray E, Sever MJ, Barnett SA (2002) Electrochemical performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 composite cathodes. Solid State Ionics 148:27–34

    Article  CAS  Google Scholar 

  29. Lust E, Kivi I, Nurk G et al (2007) Influence of cathode porosity and potential on oxygen reduction kinetics at intermediate temperature SOFCs cathodes. ECS Trans 7:1071–1080

    Article  Google Scholar 

  30. Somalu MR, Yufit V, Brandon NP (2013) The effect of solids loading on the screen-printing and properties of nickel/scandia-stabilized-zirconia anodes for solid oxide fuel cells. Int J Hydrog Energy 38:9500–9510

    Article  CAS  Google Scholar 

  31. Shimada H, Suzuki T, Yamaguchi T et al (2016) Challenge for lowering concentration polarization in solid oxide fuel cells. J Power Sources 302:53–60

    Article  CAS  Google Scholar 

  32. Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674

    Article  CAS  Google Scholar 

  33. Zeng P, Ran R, Chen Z et al (2007) Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen selective membranes. J Memb Sci 302:171–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universiti Kebangsaan Malaysia (UKM) and the Ministry of Science, Technology, and Innovation Malaysia through the research sponsorship of GUP-2016-045 and 03-01-02-SF1079. The authors would like to extend their gratitude to the Center for Research and Instrumentation Management for the support and to the UKM for excellent testing equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andanastuti Muchtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammed Ali, S.A., Anwar, M., Baharuddin, N.A. et al. Enhanced electrochemical performance of LSCF cathode through selection of optimum fabrication parameters. J Solid State Electrochem 22, 263–273 (2018). https://doi.org/10.1007/s10008-017-3754-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3754-5

Keywords

Navigation