Skip to main content
Log in

A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel polyhedral oligomeric silsesquioxane (POSS) composite polyacrylonitrile (PAN)-based porous structure gel polymer electrolyte (GPE) is prepared by phase inversion method. The POSS additive filler is firstly obtained in the dehydration condensation reaction of vinyltrimethoxysilane (VTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS). The composition and structure of synthetic POSS and the prepared POSS composite PAN-based GPEs are investigated. It is found that compared with pure PAN-based GPE, the POSS composite PAN-based GPE with 8 wt.% POSS presents the homogeneous pore distribution and abundant electrolyte uptake (540.4 wt.%), which endows GPE-8% with the excellent comprehensive performances: the highest ionic conductivity of 2.62 × 10−3 S cm−1 at room temperature, the higher lithium ion transference number of 0.38, the good compatibility with lithium anode, and the higher electrochemical stability window of 5.7 V (vs. Li/Li+). At 0.2 C, the GPE-8%-based lithium ion battery produces a satisfactory discharge capacity of 140 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  2. Jeschke S, Mutke M, Jiang ZX, Alt B, Wiemhofer HD (2014) Study of carbamate-modified disiloxane in porous PVDF-HFP membranes: new electrolytes/separators for lithium ion batteries. Chem Phys Chem 15(9):1761–1771. https://doi.org/10.1002/cphc.201400065

    Article  CAS  Google Scholar 

  3. Li H, Lin CE, Shi JL, Ma XT, Zhu BK, Zhu LP (2014) Preparation and characterization of safety PVDF/P(MMA-co-PEGMA) active separators by studying the liquid electrolyte distribution in this kind of membrane. Electrochim Acta 115:317–325. https://doi.org/10.1016/j.electacta.2013.10.183

    Article  CAS  Google Scholar 

  4. Liao YH, Chen TT, Luo XY, Fu Z, Li XP, Li WS (2016) Cycling performance improvement of polypropylene supported poly (vinylidene fluoride-co-hexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al2O3 for full batteries. J Membr Sci 507:126–134. https://doi.org/10.1016/j.memsci.2016.02.001

    Article  CAS  Google Scholar 

  5. Wang FX, Xiao SY, Shi Y, Liu LL, Zhu YS, Wu YP, Wang JZ, Holze R (2013) Spinel LiNi(x)Nn(2-x)O(4) as cathode material for aqueous rechargeable lithium batteries. Electrochim Acta 93:301–306. https://doi.org/10.1016/j.electacta.2013.01.106

    Article  CAS  Google Scholar 

  6. Zuo X, Liu XM, Cai F, Yang H, Shen XD, Liu G (2012) A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly(ethylene glycol) methacrylate) for lithium-ion cell. J Mater Chem 22(41):22265–22271. https://doi.org/10.1039/c2jm34270g

    Article  CAS  Google Scholar 

  7. Hassoun J, Panero S, Reale P, Scrosati B (2009) A new, safe, high-rate and high-energy polymer lithium-ion battery. Adv Mater 21(47):4807–4810. https://doi.org/10.1002/adma.200900470

    Article  CAS  Google Scholar 

  8. Lu QW, Fang JH, Yang J, Miao RR, Wang JL, Nuli YN (2014) Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries. J Membr Sci 449:176–183

    Article  CAS  Google Scholar 

  9. Chen ZH, Ren Y, Jansen AN, Lin CK, Weng W, Amine K (2013) New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat Commun 4:1513. https://doi.org/10.1038/ncomms2518

    Article  Google Scholar 

  10. Lee YS, Lee JH, Choi JA, Yoon WY, Kim DW (2013) Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv Funct Mater 23(8):1019–1027. https://doi.org/10.1002/adfm.201200692

    Article  CAS  Google Scholar 

  11. Yang PX, Liu L, Li LB, Hou J, Xu YP, Ren XF, An MZ, Li N (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim Acta 115:454–460. https://doi.org/10.1016/j.electacta.2013.10.202

    Article  CAS  Google Scholar 

  12. Chen ST, Li X, Yao K, Tay FEH, Kumar A, Zeng KY (2012) Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir-Blodgett deposition. Polymer 53(6):1404–1408. https://doi.org/10.1016/j.polymer.2012.01.058

    Article  CAS  Google Scholar 

  13. Chen TT, Liao YH, Wang XS, Luo XY, Li XP, Li WS (2016) Investigation on high-safety lithium ion battery using polyethylene supported poly(methyl methacrylate-acrylonitrile-butyl acrylate) copolymer based gel electrolyte. Electrochim Acta 191:923–932. https://doi.org/10.1016/j.electacta.2016.01.053

    Article  CAS  Google Scholar 

  14. Peng XX, Zhou L, Jing B, Cao Q, Wang XY, Tang XL, Zeng J (2016) A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries. J Solid State Electrochem 20(1):255–262. https://doi.org/10.1007/s10008-015-3030-5

    Article  CAS  Google Scholar 

  15. Rao MM, Liu JS, Li WS, Liang Y, Liao YH, Zhao LZ (2009) Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate). J Power Sources 189(1):711–715. https://doi.org/10.1016/j.jpowsour.2008.08.049

    Article  CAS  Google Scholar 

  16. Tang CY, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156. https://doi.org/10.1021/nl202692y

    Article  CAS  Google Scholar 

  17. Yang YQ, Chang Z, Li MX, Wang XW, Wu YP (2015) A sodium ion conducting gel polymer electrolyte. Solid State Ionics 269:1–7. https://doi.org/10.1016/j.ssi.2014.11.015

    Article  CAS  Google Scholar 

  18. Zhu YS, Xiao SY, Shi Y, Yang YQ, Hou YY, Wu YP (2014) A composite gel polymer electrolyte with high performance based on poly(vinylidene fluoride) and polyborate for lithium ion batteries. Adv Energy Mater 4:375–379

    Google Scholar 

  19. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources 146(1-2):397–401. https://doi.org/10.1016/j.jpowsour.2005.03.028

    Article  CAS  Google Scholar 

  20. Liu Y, Lee JY, Hong L (2004) In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes. J Power Sources 129(2):303–311. https://doi.org/10.1016/j.jpowsour.2003.11.026

    Article  CAS  Google Scholar 

  21. Nara H, Momma T, Osaka T (2008) Feasibility of an interpenetrated polymer network system made of di-block copolymer composed of polyethylene oxide and polystyrene as the gel electrolyte for lithium secondary batteries. Electrochemistry 76(4):276–281. https://doi.org/10.5796/electrochemistry.76.276

    Article  CAS  Google Scholar 

  22. Yue Z, McEwen IJ, Cowie JMG (2003) Novel gel polymer electrolytes based on a cellulose ester with PEO side chains. Solid State Ionics 156(1-2):155–162. https://doi.org/10.1016/S0167-2738(02)00595-7

    Article  CAS  Google Scholar 

  23. Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim Acta 45(8-9):1371–1374. https://doi.org/10.1016/S0013-4686(99)00345-X

    Article  CAS  Google Scholar 

  24. Huai Y, Deng J, Li R, Deng Z, Suo J (2013) Polymer/colloid dual-phase electrolyte membrane for rechargeable lithium batteries. J Solid State Electrochem 17(1):209–215. https://doi.org/10.1007/s10008-012-1877-2

    Article  CAS  Google Scholar 

  25. Lee KH, Lee YG, Park JK, Seung DY (2000) Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer. Solid State Ionics 133(3-4):257–263. https://doi.org/10.1016/S0167-2738(00)00708-6

    Article  CAS  Google Scholar 

  26. Liao YH, Zhou DY, Rao MM, Li WS, Cai ZP, Liang Y, Tan CL (2009) Self-supported poly(methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery. J Power Sources 189(1):139–144. https://doi.org/10.1016/j.jpowsour.2008.10.027

    Article  CAS  Google Scholar 

  27. Aravindan V, Vickraman P, Prem Kumar T (2007) ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB. J Membr Sci 305(1-2):146–151. https://doi.org/10.1016/j.memsci.2007.07.044

    Article  CAS  Google Scholar 

  28. Li WL, Xing YJ, Xing XY, Li YH, Yang G, Xu LX (2013) PVDF-based composite microporous gel polymer electrolytes containing a novel single ionic conductor SiO2(li+). Electrochim Acta 112:183–190. https://doi.org/10.1016/j.electacta.2013.08.179

    Article  CAS  Google Scholar 

  29. Subramania A, Sundaram NTK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153(1):177–182. https://doi.org/10.1016/j.jpowsour.2004.12.009

    Article  CAS  Google Scholar 

  30. Sundaram NTK, Musthafa OTM, Lokesh KS, Subramania A (2008) Effect of porosity on PVdF-co-HFP–PMMA-based electrolyte. Mater Chem Phys 110(1):11–16. https://doi.org/10.1016/j.matchemphys.2007.12.024

    Article  CAS  Google Scholar 

  31. Roghanizad F, Rafizadeh M (2015) Ionic conductivity and interfacial resistance of electrospun poly(acrylonitrile)/poly(methyl methacrylate) fibrous membrane-based polymer electrolytes for lithium ion batteries. Ionics 21(10):2789–2795. https://doi.org/10.1007/s11581-015-1488-x

    Article  CAS  Google Scholar 

  32. Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) Ionic conductivity and electrochemical stability of poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic fillers composites. J Phys Chem Solids 69(1):243–248. https://doi.org/10.1016/j.jpcs.2007.08.072

    Article  CAS  Google Scholar 

  33. Song D, Xu C, Chen Y, He J, Zhao Y, Li P, Lin W, Fu F (2015) Enhanced thermal and electrochemical properties of PVDF-HFP/PMMA polymer electrolyte by TiO2 nanoparticles. Solid State Ionics 282:31–36. https://doi.org/10.1016/j.ssi.2015.09.017

    Article  CAS  Google Scholar 

  34. Xu JJ, Ye H (2005) Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared via in situ polymerization. Electrochem Commun 7:829–835

    Article  CAS  Google Scholar 

  35. Chen-Yang YW, Chen YT, Chen HC, Lin WT, Tsai CH (2009) Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 50(13):2856–2862. https://doi.org/10.1016/j.polymer.2009.04.023

    Article  CAS  Google Scholar 

  36. Tsutsumi H, Matsuo A, Takase K, Doi S, Hisanaga A, Onimura K, Oishi T (2000) Conductivity enhancement of polyacrylonitrile-based electrolytes by addition of cascade nitrile compounds. J Power Sources 90(1):33–38. https://doi.org/10.1016/S0378-7753(00)00444-4

    Article  CAS  Google Scholar 

  37. Wu G, Yang HY, Chen HZ, Yuan F, Yang LG, Wang M, Fu RJ (2007) Novel porous polymer electrolyte based on polyacrylonitrile. Mater Chem Phys 104(2-3):284–287. https://doi.org/10.1016/j.matchemphys.2007.03.013

    Article  CAS  Google Scholar 

  38. Carol P, Ramakrishnan P, John B, Cheruvally G (2011) Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J Power Sources 196(23):10156–10162. https://doi.org/10.1016/j.jpowsour.2011.08.037

    Article  CAS  Google Scholar 

  39. Wang Q, Song WL, Fan LZ, Song Y (2015) Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. J Membr Sci 486:21–28. https://doi.org/10.1016/j.memsci.2015.03.022

    Article  CAS  Google Scholar 

  40. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8(1):21–29. https://doi.org/10.1016/j.cossms.2004.03.002

    Article  CAS  Google Scholar 

  41. Schwab JJ, Lichtenhan JD, Chaffee KP, Gordon JC, Otonari YA, Carr MJ, Bolf AG (1997) Investigations into structure/property relationships for polyhedral oligomeric silsesquioxane (POSS) based methacrylate polymers. Abs Pap ACS 213:351

    Google Scholar 

  42. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95(5):1409–1430. https://doi.org/10.1021/cr00037a012

    Article  CAS  Google Scholar 

  43. Zhou Z, Cui LM, Zhang Y, Zhang YX, Yin NAW (2008) Preparation and properties of DOSS grafted polypropylene by reactive blending. Eur Polym J 44(10):3057–3066. https://doi.org/10.1016/j.eurpolymj.2008.05.036

    Article  CAS  Google Scholar 

  44. Liu YZ, Sun Y, Zeng FL, Zhang QH, Geng L (2014) Characterization and analysis on atomic oxygen resistance of POSS/PVDF composites. Appl Surf Sci 320:908–913. https://doi.org/10.1016/j.apsusc.2014.09.121

    Article  CAS  Google Scholar 

  45. Pittman CU Jr, Li GZ, Ni H (2003) Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol Symp 196(1):301–325. https://doi.org/10.1002/masy.200390170

    Article  CAS  Google Scholar 

  46. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Degrad Stab 92(11):1986–1993. https://doi.org/10.1016/j.polymdegradstab.2007.08.004

    Article  CAS  Google Scholar 

  47. Wang SH, Kuo PL, Hsieh CT, Teng H (2014) Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS Appl Mater Interfaces 6(21):19360–19370. https://doi.org/10.1021/am505448a

    Article  CAS  Google Scholar 

  48. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177(26-32):2679–2682. https://doi.org/10.1016/j.ssi.2006.04.013

    Article  CAS  Google Scholar 

  49. Kim DW, Ko JM, Chun JH (2001) Electrochemical characteristics of Li/LiMn2O4 cells using gel polymer electrolytes. J Power Sources 93(1-2):151–155. https://doi.org/10.1016/S0378-7753(00)00560-7

    Article  CAS  Google Scholar 

  50. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta 50(1):69–75. https://doi.org/10.1016/j.electacta.2004.07.014

    Article  CAS  Google Scholar 

  51. Vijayakumar G, Karthick SN, Sathiya Priya AR, Ramalingam S, Subramania A (2008) Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries. J Solid State Electrochem 12(9):1135–1141. https://doi.org/10.1007/s10008-007-0460-8

    Article  CAS  Google Scholar 

  52. Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186. https://doi.org/10.1016/j.jpowsour.2015.06.068

    Article  CAS  Google Scholar 

  53. Zhang Z, Sui G, Bi H, Yang X (2015) Radiation-crosslinked nanofiber membranes with well-designed core–shell structure for high performance of gel polymer electrolytes. J Membr Sci 492:77–87. https://doi.org/10.1016/j.memsci.2015.05.040

    Article  CAS  Google Scholar 

  54. Kiran Kumar ABV, Daniel Thangadurai T, Lee YI (2013) Poly [2-(cinnamoyloxy)ethyl methacrylate-co-octamethacryl-POSS] nanocomposites: synthesis and properties. React Funct Polym 73(9):1175–1179. https://doi.org/10.1016/j.reactfunctpolym.2013.05.010

    Article  CAS  Google Scholar 

  55. Voronkov MG, Lavrent’yev VI (1982) Polyhedral oligosilsesquioxanes and their homo derivatives. In: Inorganic ring systems, 102 edn. Springer, Berlin Heidelberg, pp 199–236

  56. Dare EO, Liu LK, Peng J (2006) Modified procedure for improved synthesis of some octameric silsesquioxanes via hydrolytic polycondenzation in the presence of amberlite ion-exchange resins. Dalton Trans 30:3668–3671

    Article  Google Scholar 

  57. Tsao CH, Kuo PL (2015) Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J Membr Sci 489:36–42. https://doi.org/10.1016/j.memsci.2015.03.087

    Article  CAS  Google Scholar 

  58. Wen Y, Lian F, Ren Y, Guan H-Y (2014) Enhanced electrochemical properties of a novel polyvinyl formal membrane supporting gel polymer electrolyte by Al2O3 modification. J Polym Sci B Polym Phys 52(8):572–577. https://doi.org/10.1002/polb.23448

    Article  CAS  Google Scholar 

  59. Kim YW, Gong MS, Choi BK (2001) Ionic conduction and electrochemical properties of new poly(acrylonitrile-itaconate)-based gel polymer electrolytes. J Power Sources 97:654–656

    Article  Google Scholar 

  60. Ma X, Huang X, Gao J, Zhang S, Deng Z, Suo J (2014) Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries. Electrochim Acta 115:216–222. https://doi.org/10.1016/j.electacta.2013.10.169

    Article  CAS  Google Scholar 

  61. Huang Y, Gong SD, Huang R, Cao HJ, Lin YH, Yang M, Li X (2015) Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix. RSC Adv 5(57):45908–45918. https://doi.org/10.1039/C5RA06860F

    Article  CAS  Google Scholar 

  62. Gong SD, Huang Y, Cao HJ, Lin YH, Li Y, Tang SH, Wang MS, Li X (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources 307:624–633. https://doi.org/10.1016/j.jpowsour.2016.01.030

    Article  CAS  Google Scholar 

  63. Zhao J, Zhang J, Hu P, Ma J, Wang X, Yue L, Xu G, Qin B, Liu Z, Zhou X, Cui G (2016) A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta 188:23–30. https://doi.org/10.1016/j.electacta.2015.11.088

    Article  CAS  Google Scholar 

  64. Zhou L, Cao Q, Jing B, Wang X, Tang X, Wu N (2014) Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique. J Power Sources 263:118–124. https://doi.org/10.1016/j.jpowsour.2014.03.140

    Article  CAS  Google Scholar 

  65. Hsu CY, Liu RJ, Hsu CH, Kuo PL (2016) High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv 6(22):18082–18088. https://doi.org/10.1039/C5RA26345J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Fund Project of Sichuan Provincial Department of Education (15ZA0050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Huang or Haijun Cao.

Electronic supplementary material

ESM 1

(DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Huang, Y., Cao, H. et al. A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method. J Solid State Electrochem 22, 1771–1783 (2018). https://doi.org/10.1007/s10008-017-3877-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3877-8

Keywords

Navigation