Skip to main content

Advertisement

Log in

Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report herein the development of a sodium polymer battery consisting of solid polymer electrolyte (SPE) system (polymer + ionic liquid and salt) as an electrolyte and sodium cobalt oxide as cathode material. Solid polymeric membranes (SPMs) were synthesized using polymer polyethyleneoxide (PEO), ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIMTFSI) (10–40 wt.%), and sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) salt. Na0.7CoO2 cathode material was prepared using solid-state reaction route. These solid polymeric membranes were optimized using various experimental techniques such as thermogravimetric analysis, differential scanning calorimetry, and electrochemical impedance spectroscopy (EIS). It was found that the membrane containing 40 wt.% of IL has high room temperature (~ 30 °C), ionic conductivity (~ 4.1 × 10−4 S cm−1), Na+ transference number (~ 0.39), and good thermal stability. The optimized polymeric membrane shows high electrochemical potential window (~ 3.6 V) vs. Na/Na+, a specific discharge capacity of ~ 138 mAhg−1 (at 0.1 C rate) and maximum coulombic efficiency (~ 99%) for the prepared cell Na | SPE | Na0.7CoO2. Thus, the membrane containing 40 wt.% IL polymer electrolyte and Na0.7CoO2 as cathode is promising material for the formation of sodium rechargeable battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360. https://doi.org/10.1039/c3ee40847g

    Article  CAS  Google Scholar 

  2. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688. https://doi.org/10.1039/c1ee01782a

    Article  CAS  Google Scholar 

  3. Forsyth M, Yoon H, Chen F, Zhu H, DR MF, Armand M, Howlett PC (2016) Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J Phys Chem C 120(8):4276–4286

    Article  CAS  Google Scholar 

  4. Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5:3529–3538

    Google Scholar 

  5. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I

    Article  CAS  Google Scholar 

  6. Singh VK, Shalu BL, Gupta H, Singh SK, Singh RK (2017) Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 21(6):1713–1723. https://doi.org/10.1007/s10008-017-3529-z

    Article  CAS  Google Scholar 

  7. Xie Y, Zhang W, Gu S, Yan Y, Ma Z-F (2016) Process engineering in electrochemical energy devices innovation. Chin J Chem Eng 24(1):39–47. https://doi.org/10.1016/j.cjche.2015.07.013

    Article  CAS  Google Scholar 

  8. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517

    Article  CAS  Google Scholar 

  9. Luo W, Zhou L, Fu K, Yang Z, Wan J, Manno M, Yao Y, Zhu H, Yang B, Hu L (2015) A thermally conductive separator for stable Li metal anodes. Nano Lett 15(9):6149–6154. https://doi.org/10.1021/acs.nanolett.5b02432

    Article  CAS  Google Scholar 

  10. Singh VK, Shalu CSK, Singh RK (2016) Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries. RSC Adv 6(46):40199–40210. https://doi.org/10.1039/C6RA06047A

    Article  CAS  Google Scholar 

  11. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721. https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  12. Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8(1):81–102. https://doi.org/10.1039/C4EE03192J

    Article  Google Scholar 

  13. Li Y, Mu L, Hu YS, Li H, Chen L, Huang X (2016) Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Materials 2:139–145. https://doi.org/10.1016/j.ensm.2015.10.003

    Article  Google Scholar 

  14. D’ AM, Ruffo R, Scotti R, Morazzoni F, Mari CM, Polizzi S (2012) Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Phys Chem Chem Phys 14(17):5945–5952

    Article  Google Scholar 

  15. Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki JI (2010) Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 157(4):A536–A543

    Article  CAS  Google Scholar 

  16. Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14(1):86–89. https://doi.org/10.1016/j.elecom.2011.11.009

    Article  CAS  Google Scholar 

  17. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3(4):444–450. https://doi.org/10.1002/aenm.201200803

    Article  CAS  Google Scholar 

  18. Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23(16):3593–3600. https://doi.org/10.1021/cm200450y

    Article  CAS  Google Scholar 

  19. Barpanda P, Liu G, Ling CD, Tamaru M, Avdeev M, Chung SC, Yamada Y, Yamada A (2013) Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem Mater 25(17):3480–3487. https://doi.org/10.1021/cm401657c

    Article  CAS  Google Scholar 

  20. Park CS, Kim H, Shakoor RA, Yang E, Lim SY, Kahraman R, Jung Y, Choi JW (2013) Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. J Am Chem Soc 135(7):2787–2792. https://doi.org/10.1021/ja312044k

    Article  CAS  Google Scholar 

  21. Kitajou A, Komatsu H, Chihara K, Gocheva ID, Okada S, Yamaki JI (2012) Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery. J Power Sources 198:389–392. https://doi.org/10.1016/j.jpowsour.2011.09.064

    Article  CAS  Google Scholar 

  22. Dimov N, Nishimura A, Chihara K, Kitajou A, Gocheva ID, Okada S (2013) Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-MF and Na-MF single phases as cathodes for lithium–ion and sodium–ion batteries. Electrochemical Acta 110:214–220. https://doi.org/10.1016/j.electacta.2013.05.103

    Article  CAS  Google Scholar 

  23. Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14(1):86–89. https://doi.org/10.1016/j.elecom.2011.11.009

    Article  CAS  Google Scholar 

  24. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3(4):444–450. https://doi.org/10.1002/aenm.201200803

    Article  CAS  Google Scholar 

  25. Wang Q, Madsen A, Owen JR, Weller MT (2013) Direct hydrofluorothermal synthesis of sodium transition metal fluorosulfates as possible Na-ion battery cathode materials. Chem Commun 49(21):2121–2123. https://doi.org/10.1039/c3cc38897b

    Article  CAS  Google Scholar 

  26. Lu Y, Zhang S, Li Y, Xue L, Xu G, Zhang X (2014) Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J Power Sources 247:770–777. https://doi.org/10.1016/j.jpowsour.2013.09.018

    Article  CAS  Google Scholar 

  27. Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat Mater 10(1):74–80

    Article  CAS  Google Scholar 

  28. Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46(8):3289–3294. https://doi.org/10.1021/ic0700250

    Article  CAS  Google Scholar 

  29. Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40(36):9306–9312. https://doi.org/10.1039/c1dt10798d

    Article  CAS  Google Scholar 

  30. D’ AM, Ruffo R, Scotti R, Morazzoni F, Mari CM, Polizzi S (2012) Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Phys Chem Chem Phys 14(17):5945–5952

    Article  Google Scholar 

  31. Braconnier JJ, Delmas C, Fouassier C, Hagenmuller P (1980) Comportement electrochimique des phases NaxCoO2. Mater Res Bull 15(12):1797–1804. https://doi.org/10.1016/0025-5408(80)90199-3

    Article  CAS  Google Scholar 

  32. Ma Y, Doeff MM, Visco SJ, De Jonghe LC (1993) Rechargeable Na/NaxCoO2 and Na15Pb4/NaxCoO2 polymer electrolyte cells. J Electrochem Soc 140(10):2726–2733. https://doi.org/10.1149/1.2220900

    Article  CAS  Google Scholar 

  33. Doeff MM, Visco SJ, Yanping M, Peng M, Lei D, De Jonghe LC (1995) Thin film solid state sodium batteries for electric vehicles. Electrochim Acta 40(13–14):2205–2210. https://doi.org/10.1016/0013-4686(95)00164-A

    Article  CAS  Google Scholar 

  34. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958. https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  35. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  Google Scholar 

  36. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34(5):431–448. https://doi.org/10.1016/j.progpolymsci.2008.12.001

    Article  CAS  Google Scholar 

  37. Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15(7-8):1623–1630. https://doi.org/10.1007/s10008-011-1386-8

    Article  CAS  Google Scholar 

  38. Chaurasia SK, Singh RK, Chandra S (2011) Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: evidence of complexation. Solid State Ionics 183(1):32–39. https://doi.org/10.1016/j.ssi.2010.12.008

    Article  CAS  Google Scholar 

  39. Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64:73–120. https://doi.org/10.1016/j.pmatsci.2014.03.001

    Article  CAS  Google Scholar 

  40. Ben-Ishai P, Sader E, Feldman Y, Felner I, Weger M (2005) Dielectric properties of Na0. 7CoO2 and of the superconducting Na0. 3CoO2• 1.3 H2O. J Supercond 18(4):455–459

    Article  CAS  Google Scholar 

  41. Moreno JS, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn: NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702. https://doi.org/10.1016/j.jpowsour.2013.09.137

    Article  Google Scholar 

  42. Shacklette LW, Jow TR, Townsend L (1988) Rechargeable electrodes from sodium cobalt bronzes. J Electrochem Soc 135(11):2669–2674. https://doi.org/10.1149/1.2095407

    Article  CAS  Google Scholar 

  43. Bhide A, Hariharan K (2011) Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics 192(1):360–363. https://doi.org/10.1016/j.ssi.2010.04.022

    Article  CAS  Google Scholar 

  44. Tian X, Jiang X, Zhu B, Xu Y (2006) Effect of the casting solvent on the crystal characteristics and pervaporative separation performances of P(VDF-co-HFP) membranes. J Membr Sci 279(1):479–486. https://doi.org/10.1016/j.memsci.2005.12.042

    Article  CAS  Google Scholar 

  45. Rao SS, Reddy MJ, Narsaiah EL, Rao US (1995) Development of electrochemical cells based on (PEO+ NaYF4) and (PEO+ KYF4) polymer electrolytes. Mater Sci Eng B 33(2–3):173–177

    Google Scholar 

  46. Rajkumar T, Rao GR (2008) Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Mater Chem Phys 112(3):853–857. https://doi.org/10.1016/j.matchemphys.2008.06.046

    Article  CAS  Google Scholar 

  47. Polu AR, Rhee HW, Reddy MJK, Shanmugharaj AM, Ryu SH, Kim DK (2017) Effect of POSS-PEG hybrid nanoparticles on cycling performance of polyether-LiDFOB based solid polymer electrolytes for all solid-state Li-ion battery applications. J Ind Eng Chem 45:68–77. https://doi.org/10.1016/j.jiec.2016.09.004

    Article  CAS  Google Scholar 

  48. Shalu SVK, Kumar SR (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVDF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318. https://doi.org/10.1039/C5TC00940E

    Article  CAS  Google Scholar 

  49. Anantha PS, Hariharan K (2005) Physical and ionic transport studies on poly (ethylene oxide)–NaNO3 polymer electrolyte system. Solid State Ionics 176(1):155–162. https://doi.org/10.1016/j.ssi.2004.07.006

    Article  CAS  Google Scholar 

  50. Chaurasia SK, Singh RK, Chandra S (2011) Dielectric relaxation and conductivity studies on (PEO: LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: evidence of ion–ion interaction. J Polym Sci B Polym Phys 49(4):291–300. https://doi.org/10.1002/polb.22182

    Article  CAS  Google Scholar 

  51. Hashmi SA, Bhat MY, Singh MK, Sundaram NK, Raghupathy BP, Tanaka H (2016) Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20(10):2817–2826. https://doi.org/10.1007/s10008-016-3284-6

    Article  CAS  Google Scholar 

  52. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328. https://doi.org/10.1016/0032-3861(87)90394-6

    Article  CAS  Google Scholar 

  53. Song S, Kotobuki M, Zheng F, Xu C, Savilov SV, Hu N, Lu L, Wang Y, Li WDZ (2017) A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J Mater Chem A 5(14):6424–6431. https://doi.org/10.1039/C6TA11165C

    Article  CAS  Google Scholar 

  54. Hasa I, Dou X, Buchholz D, Shao-Horn Y, Hassoun J, Passerini S, Scrosati B (2016) A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J Power Sources 310:26–31

    Article  CAS  Google Scholar 

  55. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta 56(11):3926–3933. https://doi.org/10.1016/j.electacta.2011.02.025

    Article  CAS  Google Scholar 

  56. Khairani SN, Rusdi R, Norashikin K, Norlida K (2012) Synthesis and battery studies of sodium cobalt oxides, NaCoO2 cathodes. Adv Mater Res 545:185–189

    Article  Google Scholar 

Download references

Funding

One of us R.K.S is grateful to DST, New Delhi, India for the financial assistance. V.K.S is thankful to the Department of Science and Technology, New Delhi, for providing JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Singh, S.K., Gupta, H. et al. Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery. J Solid State Electrochem 22, 1909–1919 (2018). https://doi.org/10.1007/s10008-018-3891-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3891-5

Keywords

Navigation