Skip to main content
Log in

Phase pure CuSbS2 thin films by heat treatment of electrodeposited Sb2S3/Cu layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we report the fabrication of CuSbS2 (CAS) thin films from Sb2S3/Cu multilayer developed by using electrodeposition. Sb2S3 thin films of approximately 250 nm were deposited by pulse electrodeposition from a bath containing SbCl3 and Na2S2O3 precursors onto which Cu was electrodeposited. In order to optimize the formation of pure chalcostibite phase of CuSbS2, the thickness of Cu layer was varied from 55 to 130 nm. The Sb2S3/Cu multilayer was heat treated at 250 °C under N2/S atmosphere for 30 min for its conversion into CuSbS2 and to enhance the crystallinity. XRD spectra showed orthorhombic phase for all CAS samples. Raman analysis confirmed that the sample with 100 nm of Cu thickness has the highest phase purity. SEM image demonstrated a homogeneous thin film with spherical grains. The chemical states of the elements in the phase pure CuSbS2 film were obtained from X-ray photoelectron spectroscopy evidencing the oxidation states as Cu+Sb3+S2−. The optical characterization demonstrated a band gap of 1.45 eV. Furthermore, the results showed that the CuSbS2 thin film is photosensitive and p-type. The energy level band diagram reaffirms its potential as a good absorber layer in thin film solar cells with suitable charge transport pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (version 53). Prog Photovolt Res Appl 27:3–12

    Google Scholar 

  2. Rana TR, Kim SY, Kim JH (2018) Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell. Curr Appl Phys 18:663–666

    Google Scholar 

  3. Lin S, Li X, Pan H, Chen H, Li X, Li Y, Zhou J (2016) Numerical analysis of SnS homojunction solar cell. Superlattice Microst 91:375–382

    CAS  Google Scholar 

  4. Cerdán-Pasarán A, López-Luke T, Mathew X, Mathews NR (2019) Effect of cobalt doping on the device properties of Sb2S3-sensitized TiO2 solar cells. Sol Energy 183:697–703

    Google Scholar 

  5. Yin Y, Wu C, Tang R, Jiang C, Jiang G, Liu W, Chen T, Zhu C (2019) Composition engineering of Sb2S3 film enabling high performance solar cells. Sci Bull 64:136–141

    CAS  Google Scholar 

  6. Ríos-Saldaña LE, Compeán-García VD, Moreno-García H, Rodríguez AG (2019) Improvement of the conversion efficiency of as-deposited Bi2S3/PbS solar cells using a CeO2 buffer layer. Thin Solid Films 670:93–98

    Google Scholar 

  7. Rath AK, Bernechea M, Martinez L, Konstantatos G (2011) Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi 2S 3 nanocrystals. Adv Mater 23(32):3712–3717

    CAS  PubMed  Google Scholar 

  8. Saraf R (2012) High efficiency and cost effective Cu2S/CdS thin-film solar cell. IOSR J Electr Electron Eng 2:2278–1676

    Google Scholar 

  9. Yan C, Huang J, Sun K, Johnston S, Zhang Y, Sun H, Pu A, He M, Liu F, Eder K, Yang L, Cairney JM, Ekins-Daukes NJ, Hameiri Z, Stride JA, Chen S, Green MA, Hao X (2018) Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy 3:764–772

    CAS  Google Scholar 

  10. Ananthoju B, Mohapatra J, Bahadur D, Medhekar NV, Aslam M (2019) Influence of the Cu2ZnSnS4 nanoparticles size on solar cell performance. Sol Energy Mater Sol Cells 189:125–132

    CAS  Google Scholar 

  11. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov T, Zhu Y, Mitzi DB (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv energy mater 4:1301465

  12. Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J (2014) CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater 26:3135–3143

    CAS  Google Scholar 

  13. Ornelas-Acosta RE, Shaji S, Avellaneda D, Castillo GA, Das Roy TK, Krishnan B (2015) Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull 61:215–225

    CAS  Google Scholar 

  14. Hussain A, Ahmed R, Ali N, Butt FK, Shaari A, Wan Shamsuri WN, Khenata R, Prakash D, Verma KD (2016) Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique. Superlattice Microst 89:136–144

    CAS  Google Scholar 

  15. Wan L, Ma C, Hu K, Zhou R, Mao X, Pan S, Wong LH, Xu J (2016) Two-stage co-evaporated CuSbS2 thin films for solar cells. J Alloys Compd 680:182–190

    CAS  Google Scholar 

  16. Riha SC, Koegel AA, Emery JD, Pellin MJ, Martinson ABF (2017) Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics. ACS Appl Mater Interfaces 9(5):4667–4673

    CAS  PubMed  Google Scholar 

  17. Manolache S, Duta A, Isac L, Nanu M, Goossens A, Schoonman J (2007) The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films 515:5957–5960

    CAS  Google Scholar 

  18. Ramos Aquino JA, Rodriguez Vela DL, Shaji S, Avellaneda Avellaneda D, Krishnan B (2016) Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber. Phys Status Solidi 13:24–29

    CAS  Google Scholar 

  19. Ramírez-Esquivel OY, Mazón-Montijo DA, Montiel-González Z, Aguirre-Tostado FS (2018) The role of the annealing temperature on the microstructural evolution of CuSbS2 thin films prepared by cationic exchange. Sol Energy Mater Sol Cells 185:392–398

    Google Scholar 

  20. Loranca-Ramos FE, Diliegros-Godines CJ, Silva González R, Pal M (2018) Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition. Appl Surf Sci 427:1099–1106

    CAS  Google Scholar 

  21. Septina W, Ikeda S, Iga Y, Harada T, Matsumura M (2014) Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550:700–704

    CAS  Google Scholar 

  22. Rastogi AC, Janardhana NR (2014) Properties of CuSbS2 thin films electrodeposited from ionic liquids as p-type absorber for photovoltaic solar cells. Thin Solid Films 565:285–292

    CAS  Google Scholar 

  23. Banu S, Ahn SJ, Ahn SK, Yoon K, Cho A (2016) Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energy Mater Sol Cells 151:14–23

    CAS  Google Scholar 

  24. Rodríguez-Lazcano Y, Nair MTS, Nair PK (2005) Photovoltaic p-i-n structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. J Electrochem Soc 152:G635–G638

    Google Scholar 

  25. Vinayakumar V, Shaji S, Avellaneda D, Das Roy TK, Castillo GA, Martinez JAA, Krishnan B (2017) CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application. Sol Energy Mater Sol Cells 164:19–27

    CAS  Google Scholar 

  26. Suehiro S, Horita K, Yuasa M, Tanaka T, Fujita K, Ishiwata Y, Shimanoe K, Kida T (2015) Synthesis of copper-antimony-sulfide nanocrystals for solution-processed solar cells. Inorg Chem 54:7840–7845

    CAS  PubMed  Google Scholar 

  27. Avilez Garcia RG, Meza Avendaño CA, Pal M, Mathews NR (2016) Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater Sci Semicond Process 44:91–100

    CAS  Google Scholar 

  28. Gao C, Huang J, Li H, Sun K, Lai Y, Jia M, Jiang L, Liu F (2018) Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceram Int 45:3044–3051

    Google Scholar 

  29. Ramasamy K, Tien B, Archana PS, Gupta A (2014) Copper antimony sulfide (CuSbS2) mesocrystals: a potential counter electrode material for dye-sensitized solar cells. Mater Lett 124:227–230

    CAS  Google Scholar 

  30. Krishnan B, Shaji S, Ernesto Ornelas R (2015) Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting. J Mater Sci Mater Electron 26:4770–4781

    CAS  Google Scholar 

  31. Suriakarthick R, Kumar VN, Shyju TS, Gopalakrishnan R (2015) Effect of substrate temperature on copper antimony sulphide thin films from thermal evaporation. J Alloys Compd 651:423–433

    CAS  Google Scholar 

  32. Rabhi A, Fadhli Y, Kanzari M (2015) Investigation on dispersive optical constants and microstructural parameters of the absorber CuSbS2 thin films. Vacuum 112:59–65

    CAS  Google Scholar 

  33. Fadhli Y, Rabhi A, Kanzari M (2014) Effect of annealing time and substrates nature on the physical properties of CuSbS2 thin films. J Mater Sci Mater Electron 25:4767–4773

    CAS  Google Scholar 

  34. McCarthy CL, Cottingham P, Abuyen K, Schueller EC, Culver SP, Brutchey RL (2016) Earth abundant CuSbS2 thin films solution processed from thiol–amine mixtures. J Mater Chem C 4:6230–6233

    CAS  Google Scholar 

  35. John B, Genifer Silvena G, Leo Rajesh A (2018) Influence of reaction time on the structural, optical and electrical performance of copper antimony sulfide nanoparticles using solvothermal method. Phys B Condens Matter 537:243–250

    CAS  Google Scholar 

  36. Whittles TJ, Veal TD, Savory CN, Welch AW, De Sousa Lucas FG, Gibbon JT, Birkett M, Potter RJ, Scanlon DO, Zakutayev A (2017) Core levels, band alignments, and valence-band states in CuSbS2 for solar cell applications. ACS Appl Mater Interfaces 9(48):41916–41926

    CAS  PubMed  Google Scholar 

  37. Pal M, Mathews NR, Mathew X (2017) Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal syntesis. J Mater Res 32:530–538

    CAS  Google Scholar 

  38. Medina-Montes MI, Montiel-Gonzlez Z, Paraguay-Delgado F, Mathews NR, Mathews X (2016) Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films. J Mater Sci Mater Electron 27:9710–9719

    CAS  Google Scholar 

  39. Vinayakumar V, Shaji S, Avellaneda DA, Aguilar Martinez JA, Krishnan B (2019) Highly oriented CuSbS2 thin fi lms by rapid thermal processing of pre- annealed Sb2S3-Cu layers for PV applications. Mater Sci Semicond Process 91:81–89

    CAS  Google Scholar 

  40. Han Q, Chen L, Zhu W, Wang M, Wang X, Yang X, Lu L (2009) Synthesis of Sb2S3 peanut-shaped superstructures. Mater Lett 63:1030–1032

    CAS  Google Scholar 

  41. Xu Y, Ye Q, Chen W, Pan X, Hu L, Yang S, Hayat T, Alsaedi A, Zhu J, Dai S (2018) Solution-processed CuSbS2 solar cells based on metal–organic molecular solution precursors. J Mater Sci 53:2016–2025

    CAS  Google Scholar 

  42. Zhang L, Li Y, Li X, Li C, Zhang R, Delaunay J-J, Zhu H (2016) Solution-processed CuSbS2 thin film: a promising earth-abundant photocathode for efficient visible-light-driven hydrogen evolution. Nano Energy 28:135–142

    CAS  Google Scholar 

  43. Pal M, Torres Luna Y, Silva González R, Mathews NR, Paraguay-Delgado F, Pal U (2017) Phase controlled synthesis of CuSbS2 nanostructures: effect of reaction conditions on phase purity and morphology. Mater Des 136:165–173

    CAS  Google Scholar 

  44. Garza C, Shaji S, Arato A, Perez Tijerina E, Alan Castillo G, Das Roy TK, Krishnan B (2011) P-type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol Energy Mater Sol Cells 95:2001–2005

    CAS  Google Scholar 

  45. Medina-Montes MI, Vieyra-Brito O, Mathews NR, Mathew X (2018) Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides. Semicond Sci Technol 33:055004

    Google Scholar 

  46. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:1–7

    Google Scholar 

  47. Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685

    CAS  Google Scholar 

  48. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Bogdanoff P, Zaban A (2003) Mott-Schottky analysis of Nanoporous semiconductor electrodes in dielectric state deposited on SnO2(F) conducting substrates. J Electrochem Soc 150:E293–E298

    CAS  Google Scholar 

  49. Mora-Seró I, Fabregat-Santiago F, Denier B, Bisquert J (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:126–129

    Google Scholar 

  50. Teimouri R, Mohammadpour R (2018) Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study. Superlattice Microst 118:116–122

    CAS  Google Scholar 

  51. Willis SM, Cheng C, Assender HE, Watt AAR (2011) Modified Mott-Schottky analysis of nanocrystal solar cells. arXiv.org, e-print arch, Condens matter 1–6, arXiv:1112.1623v1

  52. Banu S, Cho Y, Kim K, Kyu Ahn S, Sik Cho J, Gwak J, Cho A (2019) Effect of Cu content in CuSbS2 thin films using hybrid inks: their photovoltaic properties and defect characteristics. Sol Energy Mater Sol Cells 189:214–223

    CAS  Google Scholar 

  53. Moosakhani S, Sabbagh Alvani AA, Mohammadpour R, Hannula P-M, Ge Y, Hannula S-P (2018) Platelet CuSbS2 particles with a suitable conduction band position for solar cell applications. Mater Lett 215:157–160

    CAS  Google Scholar 

  54. Wada T, Maeda T (2017) Optical properties and electronic structures of CuSbS2, CuSbSe2, and CuSb(S1−xSex)2 solid solution. Phys Status Solidi Curr Top Solid State Phys 14:1–5

    Google Scholar 

  55. Boix PP, Nonomura K, Mathews N, Mhaisalkar SG (2014) Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today 17:16–23

    CAS  Google Scholar 

  56. Safriani L, Risdiana F, Manawan M, Bahtiar A, Aprilia A, Sari DP, Angel J, Watanabe I (2018) Charge carrier transport in blend of P3HT and ZnO nanoparticles at low temperature studied by μSR. J Phys Conf Ser 1080:012011

    Google Scholar 

  57. Ye M, He C, Iocozzia J, Liu X, Cui X, Meng X, Rager M, Hong X, Liu X, Lin Z (2017) Recent advances in interfacial engineering of perovskite solar cells. J Phys D Appl Phys 50:373002

    Google Scholar 

Download references

Acknowledgments

The infrastructure developed from these projects were used for the thermal annealing of the samples. Authors acknowledge Patricia Eugenia Altuzar Coello for XRD; Gildardo Casarrubias Segura and José Campos Alvarez for general help in the laboratory, Rogelio Moran Elvira for SEM measurements.

Funding

This work at IER-UNAM was partially supported PAPIIT IN107815, IN104518, CONACYT 300481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.R. Mathews.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, R.A., Cerdán-Pasarán, A., Perez, E.A.R. et al. Phase pure CuSbS2 thin films by heat treatment of electrodeposited Sb2S3/Cu layers. J Solid State Electrochem 24, 185–194 (2020). https://doi.org/10.1007/s10008-019-04475-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04475-3

Keywords

Navigation