Skip to main content
Log in

Internal Flows of Incompressible Fluids Subject to Stick-Slip Boundary Conditions

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study mathematical properties of internal three-dimensional flows of incompressible heat-conducting fluids with stick-slip boundary conditions, which state that the fluid adheres to the boundary until a certain criterion activates the slipping regime on the boundary. We look at this type of activated boundary condition as at an implicit constitutive equation on the boundary and establish the long-time and large-data existence of weak solutions for the incompressible three-dimensional Navier–Stokes–Fourier system with the viscosity and the heat conductivity depending on the temperature (internal energy). It is essential for our approach to know that the pressure, i.e., the quantity that is a consequence of the fact that the material is incompressible, is globally integrable. While this requirement is in the case of unsteady flows subject to a no-slip boundary condition open for most incompressible fluids, we show that this difficulty can be successfully overcome if one replaces the no-slip boundary condition by a stick-slip boundary condition. The result relies also on the approach developed in Bulíček et al. (Nonlinear Anal. Real World Appl. 10, 992–1015, 10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In fact, the discussions whether the fluid should slip or stick to the boundary goes back to the founders of fluid mechanics and is discussed in length for example in the work of Stokes [53].

  2. The density of the fluid is uniform and equals to a positive constant ρ . The governing equations (2) and (18) (considered below) are obtained from the general balance equations for linear momentum and energy by multiplying them by 1/ρ and denoting the quantities p, \(\mathbb {S}\) and q multiplied by 1/ρ again by p, \(\mathbb {S}\) and q.

  3. Note however that for internal flows characterized by (6), the conservation of the total energy of the system, i.e.,

    $$ {\int}_{\Omega} E(t, x) \, dx = {\int}_{\Omega} E(0, x) \, dx \quad \text{ for all }~ t>0 $$
    (21)

    might be required and one can observe that (21) holds if

    $$\begin{array}{@{}rcl@{}} \boldsymbol{q}\cdot \boldsymbol{n} &=& (\mathbb{S}\boldsymbol{v})\cdot \boldsymbol{n} = (\mathbb{S}\boldsymbol{n})\cdot \boldsymbol{v} = (\mathbb{S}\boldsymbol{n})_{\tau}\cdot \boldsymbol{v}_{\tau} =-\mathbf{s}\cdot \mathbf{v}_{\mathbf{\tau}}\\ &=&- \left\{\begin{array}{ll} 0 &\text{ if }~ |\boldsymbol{s}|\le \sigma_{*} \\ \sigma_{*} |\boldsymbol{v}_{\tau}| + \gamma_{*} |\boldsymbol{v}_{\boldsymbol{\tau}}|^{2} &\text{ if }~ |\boldsymbol{s}| > \sigma_{*} \end{array}\right. = -\frac{1}{\gamma_{*}} (|\boldsymbol{s}|-\sigma_{*})^{+}|\boldsymbol{s}|. \end{array} $$
    (22)

    The validity of (21) under the conditions (6) and (22) can be easily checked by integrating (18) over Ω and using the Gauss theorem.

  4. In fact, we use here the following inequality

    $${\int}_{\partial {\Omega}}|\boldsymbol{v}^{n}|^{\frac{8}{3}}\; dS \le C\|\boldsymbol{v}^{n}\|^{\frac{8}{3}}_{W^{\frac{3}{4},2}({\Omega})} \le C\|\boldsymbol{v}^{n}\|^{\frac{2}{3}}_{2} \|\boldsymbol{v}^{n}\|_{1,2}^{2}. $$

References

  1. Amirat, Y, Bresch, D., Lemoine, J., Simon, J.: Effect of rugosity on a flow governed by stationary Navier-Stokes equations. Q. Appl. Math. 59, 769–786 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amirat, Y., Climent, B., Fernández-Cara, E., Simon, J.: The Stokes equations with Fourier boundary conditions on a wall with asperities. Math. Methods Appl. Sci. 24, 255–276 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basson, A., Gérard-Varet, D.: Wall laws for fluid flows at a boundary with random roughness. Commun. Pure Appl. Math. 61, 941–987 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnivard, M., Bucur, D.: Microshape control, riblets, and drag minimization. SIAM J. Appl. Math. 73, 723–740 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bucur, D., Feireisl, E.: The incompressible limit of the full Navier-Stokes-Fourier system on domains with rough boundaries. Nonlinear Anal. RWA 10, 3203–3229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bucur, D., Feireisl, E., Nečasová, Š.: On the asymptotic limit of flows past a ribbed boundary. J. Math. Fluid Mech. 10, 554–568 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bucur, D., Feireisl, E., Nečasová, Š.: Boundary behavior of viscous fluids: Influence of wall roughness and Friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197, 117–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bucur, D., Feireisl, E., Nečasová, Š., Wolf, J.: On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries. J. Differ. Equ. 244, 2890–2908 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids. Math. Methods Appl. Sci. 33, 1995–2010 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Bulíček, M., Feireisl, E., Málek, J.: A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. RWA 10, 992–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44, 2756–2801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bulíček, M., Málek, J.: On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary. In: Amann, H. et al. (eds.) Recent Developments of Mathematical Fluid Mechanics pp. 135–156 Advances in Mathematical Fluid Mechanics. Springer, Basel (2016)

  13. Bulíček, M., Málek, J., Rajagopal, K. R.: Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56, 51–85 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bulíček, M., Málek, J., Rajagopal, K. R.: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries. SIAM J. Math. Anal. 41, 665–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casado-Díaz, J., Fernández-Cara, E., Simon, J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Consiglieri, L.: Existence for a class of non-Newtonian fluids with a nonlocal friction boundary condition. Acta. Math. Sin. (Engl. Ser.) 22, 523–534 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coron, F.: Derivation of Slip boundary conditions for the Navier-Stokes system from the Boltzmann equation. J. Stat. Phys. 54, 829–857 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Denn, M. M.: Fifty years of non-Newtonian fluid dynamics. AIChE J. 50, 2335–2345 (2004)

    Article  Google Scholar 

  19. Duvant, G., Lions, J. -L.: Inequalities in Mechanics and Physics. Springer, Berlin-Heidelberg (1976)

    Book  Google Scholar 

  20. Feireisl, E., Málek, J.: On the Navier-Stokes equations with temperature dependent transport coefficients. Differ. Equ. Nonlinear Mech. 2006, 90616 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Frehse, J., Málek, J.: Problems due to the no-slip boundary in incompressible fluid dynamics. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp 559–571. Springer-Verlag, Berlin–Heidelberg (2003)

  22. Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. Sūrikaisekikenkyūsho Kōkyūroku 888, 199–216 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Fujita, H., Kawarada, H., Sasamoto, A.: Analytical and numerical approaches to stationary flow problems with leak and slip boundary conditions. In: Advances in Numerical Mathematics; Proceedings of the Second Japan-China Seminar on Numerical Mathematics (Tokyo, 1994). Lecture Notes Numer. Appl. Anal., vol. 14, pp. 17–31. Kinokuniya, Tokyo (1995)

  24. Giga, M., Giga, Y., Sohr, H.: L p estimates for the Stokes system. In: Komatsu, H. (ed.) Functional Analysis and Related Topics, 1991. Lecture Notes in Math, vol. 1540, pp 55–67. Springer, Berlin–Heidelberg (1993)

  25. Haslinger, J., Stebel, J., Sassi, T.: Shape optimization for Stokes problem with threshold slip. Appl. Math. 59, 631–652 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hervet, H., Léger, L.: Flow with slip at the wall: from simple to complex fluids. C. R. Phys. 4, 241–249 (2003)

    Article  Google Scholar 

  27. Hron, J., Le Roux, C., Málek, J., Rajagopal, K. R.: Flows of Incompressible Fluids subject to Navier’s slip on the boundary. Comput. Math. Appl. 56, 2128–2143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hron, J., Neuss-Radu, M., Pustějovská, P.: Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect. Appl. Math. 56, 51–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Normale Superiore Pisa-Classe Sci. 23, 403–465 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jäger, W., Mikelić, A.: Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232, 429–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kashiwabara, T.: On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type. J. Differ. Equ. 254, 756–778 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ladyzhenskaya, O. A.: Attractors for the modifications of the three-dimensional Navier-Stokes equations. Philos. Trans. Roy. Soc. Lond. Ser. A 346, 173–190 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Le Roux, C.: Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions. Arch. Ration. Mech. Anal. 148, 309–356 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Le Roux, C.: Steady Stokes flows with threshold slip boundary conditions. Math. Models Methods Appl. Sci. 15, 1141–1168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Roux, C., Rajagopal, K. R.: Shear flows of a new class of power-law fluids. Appl. Math. 58, 153–177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Le Roux, C., Tani, A.: Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions. Math. Methods Appl. Sci. 30, 595–624 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Málek, J., Nečas, J., Rajagopal, K. R.: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165, 243–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Evolutionary Equations, Vol. II, pp. 371–459. Elsevier/North-Holland, Amsterdam (2005)

  40. Mikelić, A., Jäger, W.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Málek, J., Průša, V., Rajagopal, K. R.: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48, 1907–1924 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mohammadi, B., Pironneau, O., Valentin, F.: Rough boundaries and wall laws. Int. J. Numer. Methods Fluids 27, 169–177 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pochylý, F., Fialová, S., Kozubková, M., Zavadil, L.: Study of the adhesive coefficient effect on the hydraulic losses and cavitation. Int. J. Fluid Machinery Syst. 3, 386–395 (2010)

    Article  Google Scholar 

  44. Pochylý, F., Fialová, S., Malenovský, E.: Bearing with magnetic fluid and hydrophobic surface of the lining. IOP Conf. Ser. Earth Environ. Sci. 15, 2 (2012)

    Google Scholar 

  45. Průša, V., Perlácová, T.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 216, 13–21 (2015)

    Article  MathSciNet  Google Scholar 

  46. Priezjev, N. V., Darhuber, A. A., Troian, S. M.: Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005)

    Article  Google Scholar 

  47. Qian, T., Wang, X. -P., Sheng, P.: Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics. Phys. Rev. E 72, 022501 (2005)

    Article  Google Scholar 

  48. Rajagopal, K. R., Srinivasa, A. R.: On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59, 715–729 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Saito, N.: On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions. Publ. Res. Inst. Math. Sci. 40, 345–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Solonnikov, V. A.: Estimates for solutions of nonstationary system of Navier-Stokes equations. J. Soviet Math. 8, 467–523 (1977)

    Article  MATH  Google Scholar 

  51. Solonnikov, V. A.: l p -estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. 105, 2448–2484 (2001)

    Article  Google Scholar 

  52. Srinivas, S., Gayathri, R., Kothandapani, M.: The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Comput. Phys. Commun. 180, 2115–2122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stokes, G. G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 8, 287–305 (1845)

    Google Scholar 

Download references

Acknowledgments

The both authors acknowledge the support of the ERC-CZ project LL1202 financed by the Ministry of Education, Youth and Sports of the Czech Republic.

The authors acknowledge the membership to the Nečas Center for Mathematical Modeling (NCMM) and to the Charles University Center for Mathematical Modeling, Applied Analysis and Computational Mathematics (MathMAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Bulíček.

Additional information

To Professor Willi Jäger on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulíček, M., Málek, J. Internal Flows of Incompressible Fluids Subject to Stick-Slip Boundary Conditions. Vietnam J. Math. 45, 207–220 (2017). https://doi.org/10.1007/s10013-016-0221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-016-0221-z

Keywords

Mathematics Subject Classification (2010)

Navigation