Skip to main content
Log in

Elevated CO2 Effects on Peatland Plant Community Carbon Dynamics and DOC Production

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Northern peatlands are important stores of carbon and reservoirs of biodiversity that are vulnerable to global change. However, the carbon dynamics of individual peatland plant species is poorly understood, despite the potential for rising atmospheric CO2 to affect the vegetation’s contribution to overall ecosystem carbon function. Here, we examined the effects of 3 years exposure to elevated CO2 (eCO2) on (a) peatland plant community composition and biomass, and (b) plant carbon dynamics and the production of dissolved organic carbon (DOC) using a 13CO2 pulse–chase approach. Results showed that under eCO2, Sphagnum spp. cover declined by 39% (P < 0.05) and Juncus effusus L. cover increased by 40% (P < 0.001). There was a concurrent increase in above- and belowground plant biomass of 115% (P < 0.01) and 96% (P < 0.01), respectively. Vascular species assimilated and turned over more 13CO2-derived carbon than Sphagnum spp. (49% greater turnover of assimilated 13C in J. effusus and F. ovina L. leaf tissues compared with Sphagnum, P < 0.01). Elevated CO2 also produced a 66% rise in DOC concentrations (P < 0.001) and an order of magnitude more ‘new’ exudate 13DOC than control samples (24 h after 13CO2 pulse-labelling 2.5 ± 0.5 and 0.2 ± 0.1% in eCO2 and control leachate, respectively, P < 0.05). We attribute the observed increase in DOC concentrations under eCO2 to the switch from predominantly Sphagnum spp. to vascular species (namely J. effusus), leading to enhanced exudation and decomposition (litter and peat). The potential for reduced peatland carbon accretion, increased DOC exports and positive feedback to climate change are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aerts R, Ludwig F. 1997. Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–98

    Article  CAS  Google Scholar 

  • Andrus R. 1986. Some aspects of Sphagnum ecology. Can J Bot 64:416–26

    Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans MMPD, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallen B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition that affect C sequestration in Sphagnum bogs. Glob Change Biol 7:591–98

    Article  Google Scholar 

  • Ceulemans R, Mousseau M. 1994. Tansley review no-71—effects of elevated atmospheric CO2 on woody-plants. New Phytol 127:425–46

    Article  Google Scholar 

  • Charman DJ, Aravena R, Warner BG. 1994. Carbon dynamics in a forested peatland in north-eastern Ontario, Canada. J Ecol 82:55–62

    Article  Google Scholar 

  • Charman DJ, Aravena R, Bryant CL, Harkness DD. 1999. Carbon isotopes in peat, DOC, CO2, and CH4 in a holocene peatland on Dartmoor, southwest England. Geology 27:539–42

    Article  CAS  Google Scholar 

  • Chasar LS, Chanton JP, Glaser PH, Siegel DI, Rivers JS. 2000. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Glob Biogeochem Cycles 14:1095–08

    Article  CAS  Google Scholar 

  • Clymo RS. 1973. The growth of Sphagnum: some effects of environment. J Ecol 61:849–69

    Article  Google Scholar 

  • Clymo RS. 1983. Peat. In: Gore AJP.Ed. Mires: swamp, bog, fen and moor (ecosystems of the world 4A). Amsterdam: Elsevier. pp 159–24

  • Clymo RS, Hayward PM. 1982. The ecology of Sphagnum. In: Smith AJE. Eds. Bryophyte ecology. London: Chapman and Hall. pp 229–89

  • Cocksedge JL. 1988. Design and production of synthetic rainwater, LR 684 (CS), Department of Trade and Industry, Warren Spring Laboratory, HMSO 58155

  • Drake BG. 1992. A field-study of the effects of elevated CO2 on ecosystem processes in a chesapeake bay wetland. Aust J Bot 40:579–95

    Article  CAS  Google Scholar 

  • Evans CD, Monteith DT, Cooper DM. 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71

    Article  PubMed  CAS  Google Scholar 

  • Fenner N, Freeman C, Lock MA, Harmens H, Sparks T. 2007. Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environ Sci Technol 41:3146–3152

    Article  PubMed  CAS  Google Scholar 

  • Fenner N, Ostle N, Freeman C, Sleep D, Reynolds B. 2004. Peatland carbon efflux partitioning reveals that Sphagnum photosynthate contributes to the DOC pool. Plant Soil 259:345–54

    Article  CAS  Google Scholar 

  • Fitter AH, Self GK, Wolfenden J, van Vuuren MMI, Brown TK, Williamson L, Graves JD, Robinson D. 1996. Root production and mortality under elevated atmospheric carbon dioxide. Plant Soil 187:299–06

    Article  CAS  Google Scholar 

  • Freeman C, Lock MA, Marxsen J, Jones SE.1990. Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes of biofilms from contrasting rivers and streams. Freshw Biol 24:159–66

    Article  CAS  Google Scholar 

  • Freeman C, Lock MA, Reynolds B. 1993a. Impacts of climatic change on peatland hydrochemistry; a laboratory based experiment. Chem Ecol 8:49–59

  • Freeman C, Lock MA, Reynolds B. 1993b. Fluxes of carbon dioxide, methane and nitrous oxide from a Welsh peatland following simulation of water table draw-down: potential feedback to climatic change. Biogeochemistry 19:51–60

  • Freeman C, Lock MA, Reynolds B. 1993c. Climatic-change and the release of immobilized nutrients from welsh riparian wetland soils. Ecol Eng 2:367–73

  • Freeman C, Liska G, Ostle NJ, Hudson JA, Lock MA, Reynolds B. 1996. Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant Soil 180:121–27

    Article  CAS  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Lock MA, Hughes S, Reynolds B, Hudson JA. 1997 Enzymes and biogeochemical cycling in wetlands during a simulated drought. Biogeochemistry 39:177–87

    Article  CAS  Google Scholar 

  • Freeman C, Baxter R, Farrar JF, Jones SE, Stirling C. 1998 Could competition between plants and microbes regulate plant nutrition and atmospheric CO2 concentrations? Sci Total Environ 220:181–84

    Article  CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N. 2001a. Export of organic carbon from peat soils. Nature 412:785

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H. 2001b. An enzymic ‘latch’ on a global carbon store. Nature 409:149

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hudson JA. 2004 Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–98

    Article  PubMed  CAS  Google Scholar 

  • Gajewski K, Viau A, Sawada M, Atkinson D, Wilson S (2001) Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Glob Biogeochem Cycles 15:297–10

    Article  CAS  Google Scholar 

  • Gian-Reto W, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95

    Article  CAS  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:185–92

    Article  Google Scholar 

  • van Der Heijden E, Verbeek SK, Kuiper PJC (2000) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Glob Change Biol 6:201–12

    Article  Google Scholar 

  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, van Breemen N. 2001. Effects of elevated CO2 and increased N deposition on bog vegetation in the Netherlands. J Ecol 89:268–72

    Article  CAS  Google Scholar 

  • Heijmans MMPD, Klees H, de Visser W, Berendse F. 2002. Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecol 162:123–34.

    Article  Google Scholar 

  • Hoosbeek MR, van Breemen N, Berendse F, Grosvernier P, Vasander H, Wallen B. 2001. Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytol 150 459–63

    Article  Google Scholar 

  • Hope D, Billet MF, Cresser MS. 1994. A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84 301–24

    Article  PubMed  CAS  Google Scholar 

  • Hope D, Billet MF, Milne R, Brown TW.1997. Exports of organic carbon in British rivers. Hydrol Process 11 325–24

    Article  Google Scholar 

  • Jackson RB, Sala OE, Field CB, Mooney HA. 1994. CO2 alters water-use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98 257–62

    Article  Google Scholar 

  • Kang H, Freeman C, Ashendon TW. 2001. Effects of elevated CO2 on fen peat biogeochemistry. Sci Total Environ 279 45–50

    Article  PubMed  CAS  Google Scholar 

  • van Kleunen M, Stephan MA, Schmid B (2006) CO2 and density-dependent competition between grassland species. Glob Change Biol 12:2175–86

    Article  Google Scholar 

  • Kuhry P, Vitt D. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77 271–75

    Article  Google Scholar 

  • Lamborg MR, Hardy RFW, Paul EA. 1983. Microbial effects. In: Lemon ER, Ed. CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. Boulder: Westview Press. pp 131–76

  • Lu YH, Murase J, Watanabe A, Sugimoto A, Kimura M. 2004. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–86

    Article  CAS  PubMed  Google Scholar 

  • Lugo AE, Brown S, Brinson MM. 1989. Concepts in wetland ecology. In: Lugo E, Brown S, Brinson MM. Eds. Forested wetlands (Ecosystems of the world 15 A) Amsterdam: Elsevier. pp 53–85

  • Lynch JM, Whipps JM. 1990. Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Malmer N, Albinsson C, Svensson BM, Wallen B. 2003. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–82

    Article  Google Scholar 

  • Milla R, Cornelissen JHC, van Logtestijn RSP, Toet S, Aerts R. 2006. Vascular plant responses to elevated CO2 in a temperate lowland Sphagnum peatland. Plant Ecol 182:13–24

    Article  Google Scholar 

  • Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–38

    Article  CAS  Google Scholar 

  • Ostle N, Ineson P, Benham D, Sleep D. 2000. Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Painter TJ. 1983. Residues of d-lyxo-5-hexosulopyranuronic acid in Sphagnum holocellulose, and their role in cross-linking. Carbohydr Res 124:C18–C21

    Article  CAS  Google Scholar 

  • Palmer SM, Hope D, Billet MF, Dawson JJC, Bryant CL. 2001. Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338

    Article  CAS  Google Scholar 

  • Pastor J, Mladenoff D, Haila Y, Bryant J, Payette S. 1996. Biodiversity and ecosystem processes in boreal regions. In: Mooney HA, Cushman JH, Medina E, Sala OE, Scultz E.-D. Eds. Functional roles of biodiversity: a global perspective. New York: Wiley Press

  • Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B (2003) Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–86

    Article  Google Scholar 

  • Paul EA, Clark FE. 1989. Soil microbiology and biochemistry. New York: Academic

  • Rafarel CR, Ashenden TW, Roberts TM (1995) An improved Solardome system for exposing plants to elevated CO2 and temperature. New Phytol 131:481–90

    Article  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38:35–39

    Article  CAS  Google Scholar 

  • Reynolds B, Renshaw M, Sparks TH, Crane S, Hughes S, Brittain SA, Kennedy VH (1997) Trends and seasonality in stream water chemistry in two moorland catchments of the Upper River Wye, Plynlimon. Hydrol Earth Syst Sci 1:571–81

    Google Scholar 

  • Scanlon D, Moore T (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–60

    Article  CAS  Google Scholar 

  • Schiff S, Aravena R, Mewhinney E, Elgood R, Warner B, Dillon P, Trumbore S (1998) Precambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Clim Change 40:167–88

    Article  CAS  Google Scholar 

  • Shackle VJ, Freeman C, Reynolds B (2000) Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol Biochem 32:1935–40

    Article  CAS  Google Scholar 

  • Silvola J (1991) Moisture dependence of CO2 exchange and its recovery after dryingin certain boreal forest and peat mosses. Lindbergia 17:5–10

    Google Scholar 

  • Sindhoj E, Hansson AC, Andren O, Katterer T, Marissink M, Pettersson R (2000) Root dynamics in a semi-natural grassland in relation to atmospheric carbon dioxide enrichment, soil water and shoot biomass. Plant Soil 223:253–63

    Article  CAS  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach. Tokyo: McGraw-Hill

    Google Scholar 

  • Stepanauskas R, Farjalla VF, Tranvik LJ, Svensson JM, Esteves FA, Gran´eli W (2000) Bioavailability and sources of DOC and DON in macrophyte stands of a tropical coastal lake. Hydrobiologia 436:241–248

    Article  CAS  Google Scholar 

  • Stepanauskas R, Jørgensen NOG, Eigaard OR, Žvikas A, Tranvik LJ, Leonardson L (2002) Summer inputs of riverine nutrients to the baltic sea: bioavailability and eutrophication relevance. Ecol Monogr 72:579–97

    Article  Google Scholar 

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP. 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413

    Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–92

    Article  Google Scholar 

  • Toet S, Cornelissen JHC, Aerts R, Van Logtestijn RSP, De Beus M, Stoevelaar R (2006) Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. Plant Ecol 182:27–40

    Article  Google Scholar 

  • Turetsky MR, Wieder RK (1999) Boreal bog Sphagnum refixes soil produced and respired CO2–C-14. Ecoscience 6:587–591

    Google Scholar 

  • Urban NR, Bayley SE, Eisenreich SJ (1989) Export of dissolved organic carbon and acidity from peatlands. Water Resour Res. 25:1619–1628

    Article  CAS  Google Scholar 

  • van Veen JA, Merckx R, van de Geijn SC (1989) Plant- and soil-related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115:179–88

    Article  Google Scholar 

  • Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in Sphagnum. Acta Bot Neerlandica 46:117–30

    CAS  Google Scholar 

  • Verhoeven JTA, Toth E (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition of living tissue homogenates. Soil Biol Biochem 27:271–75

    Article  CAS  Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–45

    Article  Google Scholar 

  • Wetzel RG 1992 Gradient dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229:181–198

    CAS  Google Scholar 

  • Williams BL, Silcock DJ, Young M (1999) Seasonal dynamics of N in two Sphagnum moss species and the underlying peat treated with 15NH 15NO3. Biogeochemistry 45:285–02

    Google Scholar 

  • Woodin SJ, Lee JA (1987) The fate of some components of acidic deposition in ombrotrophic mires. Environ Pollut 45:61–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

N. Fenner, N. Ostle and C. Freeman gratefully received funding from the National Environment Research Council, and N. Fenner and C. Freeman from the Leverhulme trust, UK. N. Fenner acknowledges support through the Sir William Roberts scholarship (University of Wales Bangor), and C. Freeman through a Royal Society Fellowship. The authors thank A. Stott (NERC-Stable Isotope Facility, CEH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Fenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenner, N., Ostle, N.J., McNamara, N. et al. Elevated CO2 Effects on Peatland Plant Community Carbon Dynamics and DOC Production. Ecosystems 10, 635–647 (2007). https://doi.org/10.1007/s10021-007-9051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9051-x

Keywords

Navigation