Skip to main content
Log in

N:P Ratio and the Nature of Nutrient Limitation in Calluna-Dominated Heathlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

There is growing evidence from different sources that prolonged high N deposition causes a shift from nitrogen (N) limitation to nitrogen and phosphorus (P) co-limitation or even P limitation in many terrestrial ecosystems. However, the number of ecosystems where the type of limitation has been directly tested by longer-term full-factorial field experiments is very limited. We conducted a 5-year fertilization experiment with N and P in the Lüneburger Heide (NW Germany) to test the hypothesis that, following decades of elevated atmospheric N inputs, plant growth in dry lowland heaths may have shifted from N to N–P co-limitation or P limitation. We also tested whether the plant tissue N:P ratio reflects the type of nutrient limitation in a continental lowland heathland. Experimental plots dominated by Calluna vulgaris received regular additions of N (50 kg N ha−1 y−1), P (20 kg P ha−1 y−1), a combination of both, or water only (control) from 2004 to 2008. Over the whole study period, a highly significant positive N effect on shoot length was found, thus indicating N limitation. We conclude that a clear shift from N limitation to N–P co-limitation or P limitation has not yet occurred. Tissue N:P ratios showed a high temporal variability and no relationship between tissue N:P ratio and the shoot length response of Calluna to nutrient addition was found. The N:P tool is thus of limited use at the local scale and within the range of N:P ratio observed in this study, and should only be used as a rough indicator for the prediction of the type of nutrient limitation in lowland heathland on a larger geographical scale with a broader interval of N:P ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntsen G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. Bioscience 48:921–34.

    Article  Google Scholar 

  • Achermann B, Bobbink R, Eds. 2003. Empirical critical loads for nitrogen. Berne: Swiss Agency for the Environment Forest and Landscape (SAEFL). 327 pp.

    Google Scholar 

  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608.

    Article  Google Scholar 

  • Aerts R, Wallen B, Malmer N. 1992. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–40.

    Article  Google Scholar 

  • Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67.

    Article  CAS  Google Scholar 

  • Akselsson C, Westling O, Alvetag M, Thelin G, Fransson AM, Hellsten S. 2008. The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci Total Environ 404:284–9.

    Article  CAS  PubMed  Google Scholar 

  • Allen SE. 1989. Chemical analysis of ecological materials. Oxford: Blackwell. 565 pp.

    Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hájková P, Hansen I, Iacumin P, Gedrol R. 2004. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–16.

    Article  Google Scholar 

  • Carroll JA, Caporn SJM, Cawley L, Read DJ, Lee JA. 1999. The effects of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytol 141:423–31.

    Article  Google Scholar 

  • Cuesta D, Taboada A, Calvo L, Salgado JM. 2008. Short- and medium-term effects of experimental nitrogen fertilization on arthropods associated with Calluna vulgaris heathlands in north-west Spain. Environ Pollut 152:394–402.

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Howarth RW. 2007. Nutrients in synergy. Nature 449:1000–1.

    Article  CAS  PubMed  Google Scholar 

  • De Schrijver A, Verheyen K, Mertens J, Staelens J, Wuyts K, Muys B. 2008. Nitrogen saturation and net ecosystem production. Nature 451:E1.

    Article  PubMed  CAS  Google Scholar 

  • Dise NB, Matzner E, Gundersen P. 1998. Synthesis of nitrogen pools and fluxes from European forest ecosystems. Water Air Soil Pollut 105:143–54.

    Article  CAS  Google Scholar 

  • Engel SK. 1988. Untersuchungen über Schwefel- und Stickstoff-haltige Immissionswirkungen in Heidegesellschaften des Naturschutzgebietes Lüneburger Heide. Dissertation, University of Gießen. 187 pp.

  • Evans CD, Caporn SJM, Carroll JA, Pilkington MG, Wilson DB, Ray N, Cresswell N. 2006. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environ Pollut 143:468–78.

    Article  CAS  PubMed  Google Scholar 

  • Fottner S, Härdtle W, Niemeyer M, Niemeyer T, von Oheimb G, Meyer H, Mockenhaupt M. 2007. Impact of sheep grazing on nutrient budgets of dry heathlands. Appl Veg Sci 10:391–8.

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Gimingham CH. 1960. Biological flora of the British Isles: Calluna vulgaris (L.) Hull. J Ecol 48:455–83.

    Article  Google Scholar 

  • Gordon C, Woodin SJ, Alexander IJ, Mullins CE. 1999. Effects of increased temperature, drought and nitrogen supply on two upland perennials of contrasting functional type: Calluna vulgaris and Pteridium aquilinum. New Phytol 142:243–58.

    Article  Google Scholar 

  • Gress SE, Nichols TD, Northcraft CC, Peterjohn WT. 2007. Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88:119–30.

    Article  PubMed  Google Scholar 

  • Gundersen P. 1998. Effects of enhanced nitrogen deposition in a spruce forest in Klosterhede, Denmark, examined by moderate NH4NO3 addition. For Ecol Manag 101:251–68.

    Article  Google Scholar 

  • Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–66.

    Article  Google Scholar 

  • Härdtle W, Niemeyer M, Niemeyer T, Assmann T, Fottner S. 2006. Can management compensate for atmospheric nutrient deposition in heathland ecosystems? J Appl Ecol 43:759–69.

    Article  CAS  Google Scholar 

  • Härdtle W, von Oheimb G, Niemeyer M, Niemeyer T, Assmann T, Meyer H. 2007. Nutrient leaching in dry heathland ecosystems: effects of atmospheric deposition and management. Biogeochemistry 86:201–15.

    Article  CAS  Google Scholar 

  • Härdtle W, von Oheimb G, Gerke AK, Niemeyer M, Niemeyer T, Assmann T, Drees C, Matern A, Meyer H. 2009. Shifts in N and P budgets of heathland ecosystems: effects of management and atmospheric inputs. Ecosystems 12:298–310.

    Article  CAS  Google Scholar 

  • Hoffmann G. 1997. Methodenbuch Band 1. Die Untersuchung von Böden. Darmstadt: VDLUFA-Verlag. 540 pp.

    Google Scholar 

  • Koerselman W, Meuleman AFM. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–50.

    Article  Google Scholar 

  • Lamble KJ, Hill SJ. 1998. Microwave digestion procedures for environmental matrices. Analyst 123:103–33.

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H. 2004. How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804.

    Article  CAS  Google Scholar 

  • Matzner E. 1980. Untersuchungen zum Elementhaushalt eines Heide-Ökosystems (Calluna vulgaris) in Nordwestdeutschland. Gött Bodenkd Ber 63:1–120.

    Google Scholar 

  • Menge DN, Field CB. 2007. Simulated global change alter phosphorus demand in annual grassland. Glob Change Biol 13:2582–91.

    Article  Google Scholar 

  • Mohamed A, Härdtle W, Jirjahn B, Niemeyer T, von Oheimb G. 2007. Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecol 189:279–89.

    Article  Google Scholar 

  • Mück DM. 1998. Untersuchungen zur Bedeutung von Stickstoffinput und interspezifischer Konkurrenz für die Heidevergrasung. Dissertation, University of Gießen. 153 pp.

  • Nielsen PL, Andresen LC, Michelsen A, Schmidt IK, Kongstad J. 2009. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants. Appl Soil Ecol 42:279–87.

    Article  Google Scholar 

  • Niemeyer M, Niemeyer T, Fottner S, Härdtle W, Mohamed A. 2007. Impact of sod-cutting and choppering on nutrient budgets of dry heathlands. Biol Conserv 134:344–53.

    Article  Google Scholar 

  • Niemeyer T, Niemeyer M, Mohamed A, Fottner S, Härdtle W. 2005. Impact of prescribed burning on the nutrient balance of heathlands with particular reference to nitrogen and phosphorus. Appl Veg Sci 8:183–92.

    Article  Google Scholar 

  • Øien DI. 2004. Nutrient limitation in boreal rich-fen vegetation: a fertilization experiment. Appl Veg Sci 7:119–32.

    Article  Google Scholar 

  • Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Ashenden TW, Brittain SA, Reynolds B, Emmett BA. 2005. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry. Environ Pollut 135:29–40.

    Article  CAS  PubMed  Google Scholar 

  • Power SA, Ashmore MR, Cousins DA. 1998a. Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environ Pollut 102:27–34.

    Article  CAS  Google Scholar 

  • Power SA, Ashmore MR, Cousins DA, Sheppard LJ. 1998b. Effects of nitrogen addition on the stress sensitivity of Calluna vulgaris. New Phytol 138:663–74.

    Article  CAS  Google Scholar 

  • Power SA, Green ER, Barker CG, Bell NB, Ashmore MR. 2006. Ecosystem recovery: heathland response to a reduction in nitrogen deposition. Glob Change Biol 12:1241–52.

    Article  Google Scholar 

  • Sardans J, Peñuelas J. 2007. Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201.

    Article  Google Scholar 

  • Schlichting E, Blume HP, Stahr K. 1995. Bodenkundliches Praktikum. Berlin: Blackwell. 295 pp.

    Google Scholar 

  • Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M. 2004. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–49.

    Article  CAS  Google Scholar 

  • Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R. 2005. Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. J Veg Sci 16:399–406.

    Article  Google Scholar 

  • Tessier JT, Raynal DJ. 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–34.

    Article  CAS  Google Scholar 

  • Timmer VR, Stone EL. 1978. Comparative foliar analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil Sci Soc Am J 42:125–30.

    Article  CAS  Google Scholar 

  • Treseder KK. 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–20.

    Article  PubMed  Google Scholar 

  • Turner BL, Chudek JA, Whitton BA, Baxter R. 2003. Phosphorus composition of upland soils polluted by long-term atmospheric nitrogen deposition. Biogeochemistry 65:259–74.

    Article  CAS  Google Scholar 

  • Uren SC, Ainsworth N, Power SA, Cousins DA, Huxedurp LM, Ashmore MR. 1997. Long-term effects of ammonium sulphate on Calluna vulgaris. J Appl Ecol 34:208–16.

    Article  CAS  Google Scholar 

  • van Meeteren MJM, Tietema A, Westerveld JW. 2007. Regulation of microbial carbon, nitrogen, and phosphorus transformations by temperature and moisture during decomposition of Calluna vulgaris litter. Biol Fertil Soils 44:103–12.

    Article  CAS  Google Scholar 

  • Verhoeven JTA, Schmitz MB. 1991. Control of plant growth by nitrogen and phosphorus in mesotrophic fens. Biogeochemistry 12:135–48.

    Article  CAS  Google Scholar 

  • Verhoeven JTA, Koerselman W, Meuleman AFM. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: Relations with atmospheric inputs and management regimes. Trends Ecol Evol 11:494–7.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Verein Naturschutzpark e.V. for collaboration and for permission to conduct this study in the nature reserve. We thank Claudia Drees, Thomas Huk and Walter Seidling for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goddert von Oheimb.

Additional information

Author contributions

SAP, AM, and WH designed the study; GvO, KF, UF, AM, AK, and NB performed the research; GvO, SAP, KF, UF, AM, AK, and WH analysed the data; SAP, AM, and AK contributed new methods; GvO, SAP, KF, and WH wrote the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Oheimb, G., Power, S.A., Falk, K. et al. N:P Ratio and the Nature of Nutrient Limitation in Calluna-Dominated Heathlands. Ecosystems 13, 317–327 (2010). https://doi.org/10.1007/s10021-010-9320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9320-y

Keywords

Navigation