Skip to main content
Log in

Dissolved Organic Matter Characteristics Across a Subtropical Wetland’s Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Wetlands are known to be important sources of dissolved organic matter (DOM) to rivers and coastal environments. However, the environmental dynamics of DOM within wetlands have not been well documented on large spatial scales. To better assess DOM dynamics within large wetlands, we determined high resolution spatial distributions of dissolved organic carbon (DOC) concentrations and DOM quality by excitation–emission matrix spectroscopy combined with parallel factor analysis (EEM–PARAFAC) in a subtropical freshwater wetland, the Everglades, Florida, USA. DOC concentrations decreased from north to south along the general water flow path and were linearly correlated with chloride concentration, a tracer of water derived from the Everglades Agricultural Area (EAA), suggesting that agricultural activities are directly or indirectly a major source of DOM in the Everglades. The optical properties of DOM, however, also changed successively along the water flow path from high molecular weight, peat-soil and highly oxidized agricultural soil-derived DOM to the north, to lower molecular weight, biologically produced DOM to the south. These results suggest that even though DOC concentration seems to be distributed conservatively, DOM sources and diagenetic processing can be dynamic throughout wetland landscapes. As such, EEM–PARAFAC clearly revealed that humic-enriched DOM from the EAA is gradually replaced by microbial- and plant-derived DOM along the general water flow path, while additional humic-like contributions are added from marsh soils. Results presented here indicate that both hydrology and primary productivity are important drivers controlling DOM dynamics in large wetlands. The biogeochemical processes controlling the DOM composition are complex and merit further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Balcarczyk K, Jones JB, Jaffé R, Maie N. 2009. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–70.

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100.

    Article  CAS  Google Scholar 

  • Boyer JN. 2006. Shifting N and P limitation along a north-south gradient of mangrove estuaries in South Florida. Hydrobiologia 569:167–77.

    Article  CAS  Google Scholar 

  • Boyer JN, Fourqurean JW, Jones RD. 1997. Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariable analyses: zones if similar influence. Estuaries 20:743–58.

    Article  CAS  Google Scholar 

  • Ceppi SB, Velasco MI, De Pauli CP. 1999. Differential scanning potentiometry: surface charge development and apparent dissolution constants of natural humic acids. Talanta 50:1057–63.

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Daroub SH, Lang TA, Diaz OA. 2006. Specific conductance and ionic characteristics of farm canals in the everglades agricultural area. J Environ Qual 35:141–50.

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Price R, Yamashita Y, Jaffé R. 2010. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectroscopy combined with multivariate statistics. Appl Geochem 25:872–80.

    Article  CAS  Google Scholar 

  • Childers DL, Doren RF, Jones RD, Noe GB, Rugge M, Scinto LJ. 2003. Decadal changes in vegetation and soil phosphorus pattern across the Everglades landscape. J Environ Qual 32:344–62.

    Article  PubMed  CAS  Google Scholar 

  • Cory RM, McKnight DM. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinines in dissolved organic matter. Environ Sci Technol 39:8142–9.

    Article  PubMed  CAS  Google Scholar 

  • Fellman JB, D’Amore DV, Hood E, Boone RD. 2008. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southern Alaska. Biogeochemistry 88:169–84.

    Article  CAS  Google Scholar 

  • Fellman JB, Hood E, Edwards RT, D’Amore DV. 2009. Changes in concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res 114:G01021.

    Article  CAS  Google Scholar 

  • Findlay SEG, Sinsabaugh RL, Eds. 2003. Aquatic ecosystems: interactivity of dissolved organic matter. San Diego: Academic Press.

    Google Scholar 

  • Frenette J-J, Arts MT, Morin J. 2003. Spectral gradients of downwelling light in a fluvial lake (LakeSaint-Pierre, St-Lawrence River). Acuatic Ecology 37:77–85.

    Article  Google Scholar 

  • García-Gil JC, Ceppi SB, Velasco MI, Polo A, Senesi N. 2004. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma 121:135–42.

    Article  CAS  Google Scholar 

  • Hansell DA, Carlson CA. 1998. Net community production of dissolved organic carbon. Global Biogeochem Cycles 12:443–53.

    Article  CAS  Google Scholar 

  • Harvey JW, McCormick PV. 2009. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrology Journal 17:185–201.

    CAS  Google Scholar 

  • Hayakawa H, Sugiyama Y. 2008. Spatial and seasonal variations in attenuation of solar ultraviolet radiation in Lake Biwa, Japan. J Photochem Photobiol B 90:121–33.

    PubMed  CAS  Google Scholar 

  • Hedges JI, Keil RG, Benner R. 1997. What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212.

    Article  CAS  Google Scholar 

  • Helms JR, Jason AS, Ritchie JD, Minor EC, Kieber DJ, Mopper K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–69.

    Google Scholar 

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RGM. 2009. Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res 114:G00F03.

    Article  Google Scholar 

  • Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D. 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–7.

    Article  PubMed  CAS  Google Scholar 

  • Jaffé R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL. 2008. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J Geophys Res 113:G04032.

    Article  CAS  Google Scholar 

  • Larsen LG, Aiken GR, Harvey JW, Noe GB, Crimaldi JP. 2010. Using fluorescence spectroscopy to trace seasonal DOM dynamics, distribution effects, and hydrologic transport in the Florida Everglades. J Geophys Res 115:G03001. doi:10,1029/2009JG001140.

  • Light SS, Dineen JW. 1994. Water control in the Everglades: a historical perspective. In: Davis SM, Ogden JC, Eds. Everglades: the ecosystem and its restoration. Delray Beach: St. Lucie Press. p 47–84.

    Google Scholar 

  • Liu GL, Cai Y, Mao Y, Scheidt DJ, Kalla PI, Richards J, Scinto LJ, Tachiev G, Roelant D, Appleby C. 2009. Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades. Environ Sci Technol 43:4361–6.

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Maie N, Hanna JV, Childers DL, Jaffé R. 2003. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades. Water Res 37:2599–606.

    Article  PubMed  CAS  Google Scholar 

  • Maie N, Parish KJ, Watanabe A, Knicker H, Benner R, Abe T, Kaiser K, Jaffé R. 2006a. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem. Geochim Cosmochim Acta 70:4491–506.

    Article  CAS  Google Scholar 

  • Maie N, Jaffé R, Miyoshi T, Childers DL. 2006b. Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314.

    Article  CAS  Google Scholar 

  • Maie N, Scully NM, Pisani O, Jaffé R. 2007. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41:563–70.

    Article  PubMed  CAS  Google Scholar 

  • McCormick PV, Newman S, Miao SL, Gawlik DE, Marley D, Reddy KR, Fontaine TD. 2002. Effects of anthropogenic phosphorus inputs on the Everglades. In: Porter JW, Porter KG, Eds. The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem sourcebook. Boca Raton: CRC Press. p 83–126.

    Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48.

    Article  CAS  Google Scholar 

  • Mladenov N, McKnight DM, Wolski P, Ramberg L. 2005. Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands 2:622–38.

    Article  Google Scholar 

  • Mladenov N, McKnight DM, Macko SA, Norris M, Cory RM, Ramberg L. 2007a. Chemical characterization of DOM in channels of a seasonal wetland. Aquat Sci 69:456–71.

    Article  CAS  Google Scholar 

  • Mladenov N, McKnight DM, Wolski P, Murray-Hudson N. 2007b. Simulation of DOM fluxes in a seasonal floodplain of the Okavango Delta, Botswana. Ecol Model 205:181–95.

    Article  Google Scholar 

  • Mulholland PJ. 2003. Large-scale patterns in dissolved organic carbon concentration, flux, and sources. In: Findlay SEG, Sinsabaugh RL, Eds. Aquatic ecosystems: interactivity of dissolved organic matter. San Diego: Academic Press. p 139–59.

    Google Scholar 

  • Ohno T, Bro R. 2006. Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Sci Soc Am J 70:2028–37.

    Article  CAS  Google Scholar 

  • Osborne TZ, Inglett PW, Reddy KR. 2007. The use of senescent plant biomass to investigate relationships between potential particulate and dissolved organic matter in a wetland ecosystem. Aquat Bot 86:53–61.

    Article  Google Scholar 

  • Price RM, Swart PK. 2006. Geochemical indicators of groundwater recharge in the surficial aquifer system, Everglades National Park, Florida, USA. In: Harmon RS, Wicks C, Eds. Perspectives on Karst geomorphology, hydrology, and geochemistry. Geological Society of America Special Paper 404. Boulder, Colorado. p 251–66.

  • Price RM, Swart PK, Forqurean JW. 2006. Coastal groundwater discharge—an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569:23–36.

    Article  CAS  Google Scholar 

  • Qualls RG, Richardson CJ. 2003. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197–229.

    Article  CAS  Google Scholar 

  • Richardson CJ. 2009. The Everglades: North America’s subtropical wetland. Wetlands Ecol Manage. doi:10.1007/sl1273-009-9156-4.

  • Santín C, Yamashita Y, Otero X, Álvarez MÁ, Jaffé R. 2009. Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis. Biogeochemistry 96:131–47.

    Article  CAS  Google Scholar 

  • Scheidt DJ, Kalla PI. 2007. Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat. Monitoring for adaptive management. A R-EMAP Status Report. USEPA Region 4, Athens GA. EPA 904-R-07-001. 98p.

  • Scully NM, Maie N, Daily SK, Boyer JN, Jones RD, Jaffé R. 2004. Early diagenesis of plant-derived dissolved organic matter along a wetland, mangrove, estuary ecotone. Limnol Oceanogr 49:1667–78.

    Article  CAS  Google Scholar 

  • Sklar FH, Chimney MJ, Newman S, McCormick PV, Gawlick D, Miao SL, McVoy C, Said W, Newman J, Coronado C, Crozier G, Korvela M, Rutchey K. 2005. The ecological-societal underpinnings of Everglades restoration. Front Ecol Environ 3:161–9.

    Article  Google Scholar 

  • Spencer RGM, Pellerin BA, Bergamaschi BA, Downing BD, Kraus TEC, Smart DR, Dahlgren RA, Hernes PJ. 2007. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). Hydrol Process 21:3181–9.

    Article  CAS  Google Scholar 

  • Spencer RGM, Aiken GR, Bulter KD, Dornblaser MM, Striegl RG, Hernes PJ. 2009a. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys Res Lett 36:L06041.

    Article  CAS  Google Scholar 

  • Spencer RGM, Stubbins A, Hernes PJ, Baker A, Mopper K, Aufdenkampe AK, Dyda RY, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J. 2009b. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J Geophys Res 114:G03010.

    Article  CAS  Google Scholar 

  • Spencer RGM, Hernes PJ, Ruf R, Baker A, Dyda RY, Stubbins A, Six J. 2010. Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J Geophys Res 115:G03013. doi:10.1029/2009JG001180,2010.

  • Stedmon CA, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–9.

    CAS  Google Scholar 

  • Stedmon CA, Markager S. 2005. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–97.

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–54.

    Article  CAS  Google Scholar 

  • Stern J, Wang Y, Gu B, Newman J. 2007. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Appl Geochem 22:1936–48.

    Article  CAS  Google Scholar 

  • Stober QJ, Thornton K, Jones R, Richards J, Ivey C, Welch R, Madden M, Trexler J, Gaiser E, Scheidt D, Rathburn S. 2001. South Florida ecosystem assessment: Phase I/II – Everglades stressor interactions: hydropatterns, eutrophication, habitat alteration, and mercury contamination. USEPA Region 4, Athens GA. EPA904-R-01-002. 63 pp.

  • Tate RL. 1980. Microbial oxidation of histosols. Adv Microb Ecol 4:169–210.

    CAS  Google Scholar 

  • Wang Y, Hsieh YP, Landing WM, Choi YH, Salters V, Campbell D. 2002. Chemical and carbon isotopic evidence for the source and fate of dissolved organic matter in the northern Everglades. Biogeochemistry 61:269–89.

    Article  CAS  Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos MA. 2010. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–71.

    Article  CAS  Google Scholar 

  • Wilson HF, Xenopoulos MA. 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41.

    Article  CAS  Google Scholar 

  • Yamashita Y, Jaffé R. 2008. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environ Sci Technol 42:7374–9.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Tanoue E. 2003. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–71.

    Article  CAS  Google Scholar 

  • Yamashita Y, Jaffé R, Maie N, Tanoue E. 2008. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation and emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol Oceanogr 53:1900–8.

    CAS  Google Scholar 

  • Yamashita Y, Maie N, Briceño H, Jaffé R. 2010. Optical characterization of dissolved organic matter (DOM) in tropical rivers of Guayana Shield, Venezuela. J Geophys Res 105:G00F10.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank EPA Region 4 and the R-EMAP Project, especially D. J. Scheidt and P. I. Kalla, for kindly providing the surface water samples used in this study, and two anonymous reviewers and the Associate Editor for helpful comments that improved the quality of this manuscript. NSF through the FCE-LTER program provided partial financial support for this research. YY and NM thank the College of Arts and Sciences for financial support during this study. This is contribution number 487 from the Southeast Environmental Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Jaffé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, Y., Scinto, L.J., Maie, N. et al. Dissolved Organic Matter Characteristics Across a Subtropical Wetland’s Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems 13, 1006–1019 (2010). https://doi.org/10.1007/s10021-010-9370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9370-1

Keywords

Navigation