Skip to main content

Advertisement

Log in

Ecosystem Carbon Storage Across the Grassland–Forest Transition in the High Andes of Manu National Park, Peru

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Improved management of carbon storage by terrestrial biomes has significant value for mitigating climate change. The carbon value of such management has the potential to provide additional income to rural communities and provide biodiversity and climate adaptation co-benefits. Here, we quantify the carbon stores in a 49,300-ha landscape centered on the cloud forest–grassland transition of the high Andes in Manu National Park, Peru. Aboveground carbon densities were measured across the landscape by field sampling of 70 sites above and below the treeline. The forest near the treeline contained 63.4 ± 5.2 Mg C ha−1 aboveground, with an additional 13.9 ± 2.8 Mg C ha−1 estimated to be stored in the coarse roots, using a root to shoot ratio of 0.26. Puna grasslands near the treeline were found to store 7.5 ± 0.7 Mg C ha−1 in aboveground biomass. Comparing our result to soil data gathered by Zimmermann and others (Ecosystems 13:62–74, 2010), we found the ratio of belowground:aboveground carbon decreased from 15.8 on the puna to 8.6 in the transition zone and 2.1 in the forest. No significant relationships were found between carbon densities and slope, altitude or fire disturbance history, though grazing (for puna) was found to reduce aboveground carbon densities significantly. We scaled our study sites to the study region with remote sensing observations from Landsat. The carbon sequestration potential of improved grazing management and assisted upslope treeline migration was also estimated. Afforestation of puna at the treeline could generate revenues of US $1,374 per ha over the project lifetime via commercialization of the carbon credits from gains in aboveground carbon stocks. Uncertainties in the fate of the large soil carbon stocks under an afforestation scenario exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adler PB, Morales JM. 1999. Influence of environmental factors and sheep grazing on an Andean grassland. J Range Manag 52:471–81.

    Article  Google Scholar 

  • Braun G, Mutke J, Reder A, Bartbloft W. 2002. Biotope patterns, phytodiversity and forestline in the Andes, based on GIS and remote sensing data. In: Korner C, Spehn E, Eds. Mountain biodiversity—a global assessment. London: Parthenon Publishing Group. p 75–89.

    Google Scholar 

  • Brown S. 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper No. 134, 55 pp

  • Bruijnzeel LA, Proctor J. 1995. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? In: Hamilton LS, Juvik JO, Scatena FN, Eds. Tropical montane cloud forests. Ecological Studies, vol 110. New York: Springer. pp. 38–78.

  • Bruijnzeel LA, Veneklaas EJ. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:3–9.

    Article  Google Scholar 

  • Bubb P, May I, Miles L, Sayer J. 2004. Cloud forest agenda. Cambridge: UNEP-WCMC. p 34.

  • Bush MB. 2002. Distributional change and conservation on the Andean flank: a palaeoecological perspective. Glob Ecol Biogeogr 11:463–73.

    Article  Google Scholar 

  • Bush MB, Silman MR, Urrego DH. 2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303:827–9.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante Becerra JA, Bitencourt MD. 2007. Ecological zoning of an Andean grasslands (puna) at the manu biosphere reserve, Peru. Int J Environ Sustain Dev 6:357–72.

    Article  Google Scholar 

  • Buytaert W, Iñiguez V, Bièvre BD. 2007. The effects of afforestation and cultivation on water yield in the Andean páramo. For Ecol Manag 251:22–30.

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111:1–11.

    Article  Google Scholar 

  • Campbell JB. 1996. Introduction to remote sensing. 2nd edn. New York (NY): Guilford.

    Google Scholar 

  • Cavelier J. 1995. Reforestation with the native tree Alnus acuminata: effects on phytodiversity and species richness in an upper montane rain forest area of Colombia. In: Hamilton LS, Juvik JO, Scatena FN, Eds. Tropical montane cloud forests. New York (NY): Springer. p 125–37.

    Google Scholar 

  • Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP. 2003. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–52.

    Article  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc B 359:409–20.

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99.

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–67.

    Article  PubMed  Google Scholar 

  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46.

    Article  Google Scholar 

  • De Castro EA, Kauffman JB. 1998. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass root mass and consumption by fire. J Trop Ecol 14:263–83.

    Article  Google Scholar 

  • Del Castillo RF, Blanco-Macías A. 2007. Secondary succession under a slash-and-burn regime in a tropical montane cloud forest: soil and vegetation characteristics. In: Newton AC, Ed. Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America. Wallingford: CABI Publishing. p 158–80.

    Chapter  Google Scholar 

  • Delaney M, Brown S, Lugo AE, Torres-Lezama A, Bello Quintero N. 1997. The distribution of organic carbon in major components of forests located in five life zones of Venezuela. J Trop Ecol 13:697–708.

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X. 2007. Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignorand M, Miller HL, Eds. Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. New York, Cambridge: Cambridge University Press.

    Google Scholar 

  • Dymond JR. 1992. How accurately do image classifiers estimate area? Int J Remote Sens 13:1735–42.

    Article  Google Scholar 

  • Eastman J. 2006. IDRISI Andes—guide to GIS and image processing. Clark Labs [online]. http://planetuwcacza/nisl/Gwen’s%20Files/GeoCourse/Resource%20Mapping/Andes%20Manualpdf. Accessed 14 Feb 2008.

  • Edwards PJ, Grubb PJ. 1977. Studies of mineral cycling in a montane rain forest in New Guinea I: the distribution of organic matter in the vegetation and soil. J Ecol 65:943–69.

    Article  Google Scholar 

  • Farley KA, Kelly EF, Hofstede RGM. 2004. Soil organic carbon and water retention after conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 7:729–39.

    Article  Google Scholar 

  • Farley KA, Jobbagy EG, Jackson RB. 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11:1565–76.

    Article  Google Scholar 

  • Fehse J, Hofstede R, Aguirre N, Paladines C, Kooijman A, Sevink J. 2002. High altitude tropical secondary forests: a competitive carbon sink? For Ecol Manag 163:9–25.

    Article  Google Scholar 

  • Flombaum P, Sala OE. 2007. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J Arid Environ 69:352–8.

    Article  Google Scholar 

  • Foody G. 2002. Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201.

    Article  Google Scholar 

  • Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci Rev 55:73–106.

    Article  Google Scholar 

  • Glenday J. 2006. Carbon storage and emissions offset potential in an East African tropical rainforest. For Ecol Manag 235:72–83.

    Article  Google Scholar 

  • Golicher D, Newton AC. 2007. Applying succession models to the conservation of tropical montane forest in biodiversity loss and conservation. In: Newton AC, Ed. Fragmented forest landscapes: the forests of montane Mexico and temperate South America. Wallingford: CABI Publishing. p 200–20.

    Chapter  Google Scholar 

  • González-Espinosa M, Ramírez-Marcial N, Newton A, Rey-Benayas JM, Camacho-Cruz A, Armesto JJ, Lara A, Premoli AC, Williams-Linera G, Altamirano A, Alvarez-Aquino C, Cortés M, Galindo-Jaimes L, Muñiz MA, Núñez M, Pedraza RA, Rovere AE, Smith-Ramírez C, Thiers O, Zamorano C. 2007. Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. In: Newton AC, Ed. Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America. Wallingford: CABI Publishing. p 355–69.

    Google Scholar 

  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–60.

    Article  Google Scholar 

  • Hamilton K, Sjardin M, Shapiro A, Marcello T. 2009. Fortifying the foundation: state of the voluntary carbon markets 2009. Ecosystem Marketplace and New Carbon Finance.

  • Hofstede RGM, Groenendijk JP, Coppus R, Fehse JC, Sevink J. 2002. Impact of pine plantations on soils and vegetation in the Ecuadorian High Andes. Mt Res Dev 22:159–67.

    Article  Google Scholar 

  • Holl KD, Loik ME, Lin EHV, Samuels IA. 2000. Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor Ecol 8:339–49.

    Article  Google Scholar 

  • Houghton RA, Davidson EA, Woodwell GM. 1998. Missing sinks feedbacks and understanding the role of terrestrial ecosystems in the global carbon balance. Glob Biogeochem Cycles 12:25–34.

    Article  CAS  Google Scholar 

  • INRENA. 2002. Instituto Nacional de Recursos Naturales Plan Maestro—Proyecto Aprovechamiento y Manejo Sostenible de la Reserva de Biosfera y Parque Nacional del Manu (Pro-Manu) Peru: INRENA.

  • IUCN. 2008. Protected areas and world heritage Peru—Manu National Park. UNESCO IUCN WHC [online] UNEP. http://wwwunep-wcmcorg/sites/wh/pdf/Manupdf. Accessed 08 Jan 2009.

  • Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH. 2002. Ecosystem carbon loss with woody plant invasion. Nature 418:623–6.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis A, Reuter H, Nelson A, Guevara E. 2006. Hole-filled seamless SRTM data v3. Cali: International Center for Tropical Agriculture.

  • Jenness JS. 2004. Calculating landscape surface area from digital elevation models. Wildl Soc Bull 32:829–39.

    Article  Google Scholar 

  • Kitayama K, Aiba SI. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu Borneo. J Ecol 90:37–51.

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–30.

    Article  Google Scholar 

  • Malhi Y, Grace J. 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–7.

    Article  PubMed  Google Scholar 

  • Malhi Y, Aragão LEO, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa ACL, Hutyra LR, Oliveira P, Patiño S, Pyle EH, Robertson AL, Teixeira LM. 2008. Comprehensive assessment of carbon productivity allocation and storage in three Amazonian forests. Glob Change Biol 15:1255–74.

    Article  Google Scholar 

  • Mokany K, Raison J, Prokushkin A. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.

    Article  Google Scholar 

  • Moser G, Roderstein M, Soethe N, Hertel D, Leuschner C. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. Ecol Stud 198:229–42.

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. 2002. Change in soil carbon following afforestation. For Ecol Manag 168:241–57.

    Article  Google Scholar 

  • Pucheta E, Cabido M, Díaz S, Funes G. 1998. Floristic composition biomass and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecol 19:97–105.

    Article  Google Scholar 

  • Raich JW, Russell AE, Vitousek PM. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa Hawaii. Ecology 78:707–21.

    Google Scholar 

  • Ramsay PM, Oxley ERB. 2001. An assessment of aboveground net primary productivity in Andean grasslands of Central Ecuador. Mt Res Dev 21:161–7.

    Article  Google Scholar 

  • Robertson K, Loza-Balbuena I, Ford-Robertson J. 2004. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects. Environ Sci Policy 7:465–75.

    Article  CAS  Google Scholar 

  • Sarmiento FO, Frolich LM. 2002. Andean cloud forest tree lines: naturalness agriculture and the human dimension. Mt Res Dev 22:278–87.

    Article  Google Scholar 

  • Schuman GE, Janzen HH, Herrick JE. 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ Pollut 116:391–6.

    Article  CAS  Google Scholar 

  • Scurlock JMO, Hall DO. 1998. The global carbon sink: a grassland perspective. Glob Change Biol 4:229–33.

    Article  Google Scholar 

  • Stadtmuller T. 1987. Cloud forests in the humid tropics—a bibliographic review. Turrialba: CATIE.

    Google Scholar 

  • Still CJ, Foster PN, Schneider SH. 1999. Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–10.

    Article  CAS  Google Scholar 

  • Terborgh J. 1977. Bird species diversity on an Andean elevational gradient. Ecology 58:1007–19.

    Article  Google Scholar 

  • Van Der Werf GR, Randerson JT, Collatz GJ, Giglio L. 2003. Carbon emissions from fires in tropical and subtropical ecosystems. Glob Change Biol 9:547–62.

    Article  Google Scholar 

  • Weaver PL, Murphy PG. 1990. Forest structure and productivity in Puerto Rico’s Luquillo Mountains. Biotropica 22:69–82.

    Article  Google Scholar 

  • Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W. 2005. Coarse woody debris in a montane forest in Ecuador: mass C and nutrient stock and turnover. For Ecol Manag 205:139–47.

    Article  Google Scholar 

  • Williams MS, Schreuder HT. 2000. Guidelines for choosing volume equations in the presence of measurement error in height. Can J For Res 30:306–10.

    Article  Google Scholar 

  • Young KR, León B. 2000. Biodiversity conservation in Peru’s eastern montane forests. Mt Res Dev 20:208–11.

    Article  Google Scholar 

  • Young KR, León B. 2007. Tree-line changes along the Andes: implications of spatial patterns and dynamics. Philos Trans R Soc B 362:263–72.

    Article  Google Scholar 

  • Zimmermann M, Meir P, Silman MR, Fedders A, Gibbon A, Malhi Y, Urrego DH, Bush MB, Feeley KJ, Garcia KC, Dargie GC, Farfan WR, Goetz BP, Johnson WT, Kline KM, Modi AT, Rurau NMQ, Staudt BT, Zamora F. 2010. No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13:62–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Blue Moon Fund for support. We especially thank Manu National Park and the Peruvian Instituto Nacional de Recusos National (INRENA) and the Amazon Conservation Association (ACCA) for permission to work in Manu National Park and at the Wayquecha field station, respectively. The guards at Manu National Park and Luis Imunda provided essential logistical support and advice. Five hard-working undergraduate students from Wake Forest University and Flor Zamora, Percy Chambi and Nelson Cahuana from Universidad Nacional de San Antonio Abad del Cusco, were essential for the completion of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Gibbon.

Additional information

Author Contributions

AG, MRS, YM, JBF, and PM conceived of or designed this study; AG, MRS, MZ, GCD, WRF, and KCG performed research; AG analyzed data; and AG, MRS, YM, and JBF wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbon, A., Silman, M.R., Malhi, Y. et al. Ecosystem Carbon Storage Across the Grassland–Forest Transition in the High Andes of Manu National Park, Peru. Ecosystems 13, 1097–1111 (2010). https://doi.org/10.1007/s10021-010-9376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9376-8

Key words

Navigation