Skip to main content

Advertisement

Log in

Alteration of Macroalgal Subsidies by Climate-Associated Stressors Affects Behavior of Wrack-Reliant Beach Consumers

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Connectivity between ecosystems is of ecological relevance, especially when adjacent areas of contrasting productivity are compared. High-productive rocky shores dominated by macroalgae are one of the most important sources of wrack subsidies linked to low-productive sandy beaches. Rocky bed communities from nearshore environments are affected by shifts in ultraviolet radiation (UVR) and temperature. Therefore, any alteration to macroalgal traits, in terms of nutritional quality, pigments, or phlorotannins, due to environmental stress could trigger cascading changes in the food web of recipient ecosystems. To examine the effects of climate-associated variables, we mimicked a rocky intertidal ecosystem by constructing a set of mesocosm tanks harboring two macroalgal species, the native Laminaria ochroleuca and the non-indigenous Sargassum muticum, subjected to a combination of UVR and temperatures. We used the manipulated macroalgae to explore the effects of climate stress variables on the wrack-reliant amphipod Talitrus saltator. The macroalgae displayed differential and variable responses to UVR and temperature manipulations. L. ochroleuca nutrient quality and phlorotannins decreased with elevated UVR and at warm temperatures. S. muticum seemed to be more tolerant to stress conditions, and phlorotannin production was induced by elevated UVB. We documented concomitant effects induced by the treated macroalgae on the food consumption of T. saltator. We suggest that macroalgae became less palatable to T. saltator because chemical defenses were gained rather than a significant change in the nutritive value occurring. We hypothesize that the effects of warming and enhanced UVR on macroalgae might shift source-sink dynamics between connected ecosystems. Understanding the way in which climate-associated variables interact and influence subsidies in recipient ecosystems is of paramount relevance to assess the broad consequences of climate change and its proper management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adin R, Riera PR. 2003. Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipod, Talitridae): a stable isotopes study in the northern coast of Brittany (France). Estuar Coast Shelf Sci 56:91–8.

    Article  CAS  Google Scholar 

  • Becker S, Graeve M, Bischof K. 2010. Photosynthesis and lipid composition of the Antarctic endemic rhodophyte Palmaria decipiens: effects of changing light and temperature levels. Polar Biol 33:945–55.

    Article  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer P, Wiencke C. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–95.

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C. 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–62.

    Article  CAS  PubMed  Google Scholar 

  • Bothwell ML, Sherbot DMJ, Pollock CM. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100.

    Article  CAS  PubMed  Google Scholar 

  • Britton-Simmons KH. 2004. Direct and indirect effects of the introduced alga S. muticum on benthic, subtidal communities of Washington State, USA. Mar Ecol Prog Ser 277:61–78.

    Article  Google Scholar 

  • Brown AC, McLachlan A. 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77.

    Article  Google Scholar 

  • Cacabelos E, Olabarria C, Incera M, Troncoso JS. 2010. Do grazers prefer invasive seaweeds? J Exp Mar Biol Ecol 393:182–7.

    Article  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G. 2007. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–66.

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ. 2007. The R book. Chichester: Wiley. p 942.

    Book  Google Scholar 

  • Cronin G, Hay ME. 1996. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77:93–106.

    Article  CAS  Google Scholar 

  • Cruz-Rivera E, Hay ME. 2000. Can quantitiy replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81(1):201–19.

    Article  Google Scholar 

  • Duarte C. 1992. Nutrient concentration of aquatic plants: patterns across species. Nutrient concentration of aquatic plants: patterns across species 37:882–9.

    CAS  Google Scholar 

  • Duarte C, Acuña K, Navarro JM, Gómez I. 2011. Intra-plant differences in seaweed nutritional quality and chemical defenses: importance for the feeding behavior of the intertidal amphipod Orchestoidea tuberculata. J Sea Res 66:215–21.

    Article  CAS  Google Scholar 

  • Duarte C, Jaramillo E, Contreras H, Acuña K. 2010. Cannibalism and food availability in the talitrid amphipod Orchestoidea tuberculata. J Sea Res 64:417–21.

    Article  Google Scholar 

  • Duarte CM, Cebrian J. 1996. The fate of marine autotrophic production. Limnol Oceanogr 41:1758–66.

    Article  CAS  Google Scholar 

  • Dugan JE, Hubbard DM, McCrary MD, Pierson MO. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40.

    Article  Google Scholar 

  • Figueroa FL, Domínguez-González B, Korbee N. 2014. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar Environ Res 97:30–8.

    Article  CAS  PubMed  Google Scholar 

  • Franklin LA, Forster RM. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–32.

    Google Scholar 

  • Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K. 2009. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–92.

    Article  PubMed  Google Scholar 

  • Gao K, Zheng Y. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biol 16:2388–98.

    Article  Google Scholar 

  • Gutow L, Rahman MM, Bartl K, Saborowski R, Bartsch I, Wiencke C. 2014. Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales). J Exp Mar Biol Ecol 453:84–90.

    Article  CAS  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. 2006. The impacts of climate change in coastal marine systems. Ecol Lett 9:228–41.

    Article  PubMed  Google Scholar 

  • Hemmi A, Jormalainen V. 2002. Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83:1052–64.

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF. 2010. The impact of climate change on the world’s marine ecosystems. Science 328:1523–8.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JR, Hansen LJ, Klinger T. 2003. Interactions between UV radiation and temperature limit inferences from single-factor experiments. J Phycol 39:268–72.

    Article  Google Scholar 

  • Huovinen P, Matos J, Sousa-Pinto I, Figueroa FL. 2006. The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceola. Aquat Bot 84:308–16.

    Article  CAS  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. p 1535.

  • Lastra M, Page HM, Dugan JE, Hubbard DM, Rodil IF. 2008. Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources. Mar Biol 154:163–74.

    Article  Google Scholar 

  • Lorenzen CJ. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–6.

    Article  CAS  Google Scholar 

  • Lotze HK, Worm B, Molis M, Wahl M. 2002. Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Mar Ecol Prog Ser 243:57–66.

    Article  Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM. 1998. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B: Bioly 46:5–19.

    Article  CAS  Google Scholar 

  • Marczak LB, Thompson RM, Richardson JS. 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88(1):140–8.

    Article  PubMed  Google Scholar 

  • Mateos D, Antón M, Sánchez-Lorenzo A, Calbó J, Wild M. 2013. Long-term changes in the radiative effects of aerosols and clouds in a mid-latitude region (1985–2010). Global Planet Change 111:288–95.

    Article  Google Scholar 

  • McLachlan A, Brown AC. 2006. The ecology of sandy shores, Vol. 2Elsevier: Academic Press. p 373.

    Google Scholar 

  • Molis M, Wahl M. 2009. Comparison of the impacts of consumers, ambient UV, and future UVB irradiance on mid-latitudinal macroepibenthic assemblages. Global Change Biol 15:1833–45.

    Article  Google Scholar 

  • Monteiro CA, Engelen AH, Santos R. 2009. Macro-and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Mar Biol 156:2505–15.

    Article  Google Scholar 

  • Nakano S, Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci 98:166–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olabarria C, Arenas F, Viejo RM, Gestoso I, Vaz-Pinto F, Incera M, Rubal M, Cacabelos E, Veiga P, Sobrino C. 2013. Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065–79.

    Article  CAS  Google Scholar 

  • Olabarria C, Incera M, Garrido J, Rodil IF, Rossi F. 2009. Intraspecific diet shift in Talitrus saltator inhabiting exposed sandy beaches. Estuar Coast Shelf Sci 84:282–8.

    Article  Google Scholar 

  • Orr M, Zimmer M, Jelinski DE, Mews M. 2005. Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–507.

    Article  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–46.

    Article  CAS  Google Scholar 

  • Polis GA, Anderson TW, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316.

    Article  Google Scholar 

  • Poore AGB, Graba-Landry A, Favret M, Brennand SH, Byrne M, Dworjanyn SA. 2013. Direct and indirect effects of ocean acidification and warming on a marine plant-herbivore interaction. Oecologia 173:1113–24.

    Article  PubMed  Google Scholar 

  • R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Available: http://www.R-project.org/.

  • Rodil IF, Olabarria C, Lastra M, López J. 2008. Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches. J Exp Mar Biol Ecol 358:1–13.

    Article  Google Scholar 

  • Rohde S, Molis M, Wahl M. 2004. Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–18.

    Article  Google Scholar 

  • Roleda MY, Hanelt D, Kräbs G, Wiencke C. 2004. Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia 43:603–13.

    Article  Google Scholar 

  • Rothaüsler E, Gómez I, Karsten U, Tala F, Thiel M. 2011. Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41.

    Article  Google Scholar 

  • Sánchez-Lorenzo A, Calbó J, Wild M. 2013. Global and diffuse solar radiation in Spain: building a homogeneous dataset and assessing their trends. Global Planet Change 100:343–52.

    Article  Google Scholar 

  • Schlacher T, Dugan JE, Schoeman DS, Lastra M, Jones A, Scapini F, McLachlan A, Defeo O. 2007. Sandy beaches at the brink. Divers Distrib 13:556–60.

    Article  Google Scholar 

  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with hosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–58.

    CAS  Google Scholar 

  • Spiller DA, Piovia-Scott J, Wright AN, Yang LH, Takimoto G, Schoener TW, Iwata T. 2010. Marine subsidies have multiple effects on coastal food webs. Ecology 91:1424–34.

    Article  PubMed  Google Scholar 

  • Swanson AK, Fox CH. 2007. Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Global Change Biol 13:1696–709.

    Article  Google Scholar 

  • Vähätalo A, Søndergaard M, Schlüter L, Markaager S. 1998. Impact of solar radiation on the decomposition of detrital leaves of eelgrass Zostera marina. Mar Ecol Prog Ser 170:107–17.

    Article  Google Scholar 

  • Van Alstyne KL. 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–63.

    Article  Google Scholar 

  • Van de Waal DB, Verschoor AM, Verspagen JMH, vand Donk E, Huisman J. 2009. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–52.

    Article  Google Scholar 

  • Weatherhead EC, Andersen SB. 2006. The search for signs of recovery of the ozone layer. Nature 441:39–45.

    Article  CAS  PubMed  Google Scholar 

  • Wernberg T, Vanderklift MA, How J, Lavery PS. 2006. Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147:692–701.

    Article  PubMed  Google Scholar 

  • Wild M. 2009. Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi:10.1029/2008JD011470.

    Google Scholar 

  • Xu J, Gao K. 2010. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J Photochem Photobiol B 100:117–22.

    Article  CAS  PubMed  Google Scholar 

  • Young HS, McCauley DJ, Dunbar RB, Dirzo R. 2010. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc Natl Acad Sci 107:2072–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C. 2007. Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biol 13:1201–15.

    Article  Google Scholar 

Download references

Acknowledgments

We thank F. Barreiro, Á. Fernández, E. Sampaio and F. Vaz-Pinto for technical assistance. IFR was supported by a postdoctoral Grant from the Portuguese Foundation for Science and Technology–FCT (SFRH/BPD/87042/2012). We are grateful to one anonymous reviewer and the Subject-Matter Editor T. Done for helpful comments to the manuscript. This research was funded by CLEF-FCT (PTDC/AAC-AMB/102866/2008) within the COMPETE program, Xunta de Galicia through the ‘Programas Sectoriales de Investigación Aplicada’ (10MMA007CT/2010) co-participated by FEDER, and co-funded by the European Regional Development Fund (ERDF) through the ‘Programa Operacional Factores de Competitividade’ (POFC-COMPETE) within the ‘Quadro de Referência Estratégico Nacional’ (QREN) and PEst-C/MAR/LA0015/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván F. Rodil.

Additional information

Author contributions

IFR, CO and FA conceived the study; IFR, PLM and FA performed the research; IFR analyzed the data; and all authors contributed to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodil, I.F., Lucena-Moya, P., Olabarria, C. et al. Alteration of Macroalgal Subsidies by Climate-Associated Stressors Affects Behavior of Wrack-Reliant Beach Consumers. Ecosystems 18, 428–440 (2015). https://doi.org/10.1007/s10021-014-9836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9836-7

Keywords

Navigation