Skip to main content
Log in

Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h−1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h−1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h−1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Source: DigitalGlobe 2016.

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arnason J, Lambert J, Gale J. 1984. Mineral cycling in a tropical palm forest. Plant Soil 79:211–25.

    Article  CAS  Google Scholar 

  • Asner G, Martin R. 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–70.

    Article  Google Scholar 

  • Balzotti C, Asner G, Taylor P, Cleveland C, Cole R, Martin R, Nasto M, Osborne B, Porder S, Townsend A. 2016. Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. Ecol Appl 26:2449–62.

    Article  PubMed  Google Scholar 

  • Berg B, Matzner E. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25.

    Article  CAS  Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y. 2007. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105.

    Article  Google Scholar 

  • Badan Pusat Statistik Indonesia. 2015. Tree Crop Estate Statistics of Indonesia.

  • Carlson KM, Curran LM, Asner GP, Pittman AM, Trigg SN, Adeney JM. 2012. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat Clim Change 3:283–7.

    Article  CAS  Google Scholar 

  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.

    Article  PubMed  Google Scholar 

  • Cleveland C, Townsend A, Schmidt S. 2002. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–91.

    Article  CAS  Google Scholar 

  • Cleveland C, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–52.

    Article  Google Scholar 

  • Comeau LP, Hergoualc’h K, Hartill J, Smith J, Verchot LV, Peak D, Salim MA. 2016. How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application? Geoderma 268:41–51.

    Article  CAS  Google Scholar 

  • Couwenberg J, Dommain R, Joosten H. 2010. Greenhouse gas fluxes from tropical peatlands in Southeast Asia. Glob Change Biol 16:1715–32.

    Article  Google Scholar 

  • Craine JM, Morrow C, Fierer N. 2007. Microbial nitrogen limitation increases decomposition. Ecology 88:2105–13.

    Article  PubMed  Google Scholar 

  • Darmosarkoro W, Winarna ES. 2003. Teknologi pemupukan tanaman kelapa sawit. Dalam Lahan dan Pemupukan Kelapa Sawit. Medan: Pusat Penelitian Kelapa Sawit. pp 113–34.

    Google Scholar 

  • de Neiff A, Neiff J, Casco S. 2006. Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26:558–66.

    Article  Google Scholar 

  • Dommain R, Couwenberg J, Joosten H. 2011. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010.

    Article  Google Scholar 

  • Drösler M, Verchot LV, Freibauer A, and others. 2014. Chapter 2: drained inland organic soils. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Fukuda M, Troxler T, Eds. 2013 Supplement to the 2006 guidelines for national greenhouse gas inventories: wetlands. Switzerland: IPCC.

  • Eilers PHC, Boelens HFM. 2005. Baseline correction with asymmetric least squares smoothing. Leiden University Medical Centre Report.

  • Ernakovich J. 2014. The vulnerability of permafrost carbon to decomposition after thaw: exploring chemical and microbial controls. PhD Thesis. Colorado State University, Fort Collins.

  • Gandois L, Cobb AR, Hei C, Lim LBL, Salim A, Harvey CF. 2013. Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release. Biogeochemistry 114:183–99.

    Article  CAS  Google Scholar 

  • Gholizadeh A, Borůvka L, Saberioon M, Vašát R. 2013. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues. Appl Spectrosc 67:1349–62.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H. 2004. The effect of fire on soil organic matter—a review. Environ Int 30:855–70.

    Article  PubMed  CAS  Google Scholar 

  • Goodrick I, Nelson PN, Nake S, Webb M, Bird M, Huth N. 2016. Tree-scale spatial variability of soil carbon cycling in a mature oil palm plantation. Soil Res 54:397–406.

    Article  CAS  Google Scholar 

  • Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold, N, Murdiyarso D. 2017. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Change Biol 23:3581–99.

    Article  Google Scholar 

  • Haberhauer G, Rafferty B, Strebl F, Gerzabek MH. 1998. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 83:331–42.

    Article  CAS  Google Scholar 

  • Haynes RJ. 1986. The decomposition process: mineralization, immobilization, humus formation, and degradation. In: Haynes RJ, Ed. Mineral nitrogen in the plant–soil system. Orlando, FL: Academic Press. p 52–126.

    Google Scholar 

  • Heller C, Ellerbrock RH, Roßkopf N, Klingenfuß C, Zeitz J. 2015. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: effects of mire type and drainage intensity. Eur J Soil Sci 66:847–58.

    Article  CAS  Google Scholar 

  • Hergoualc’h K, Verchot L. 2014. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitig Adapt Strateg Glob Change 19:789–807.

    Article  Google Scholar 

  • Hirano T, Segah H, Harada T, Limin S, Junes T, Hirata R, Osaki M. 2007. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Change Ecol 13:412–25.

    Article  Google Scholar 

  • Hirano T, Jauhiainen J, Inoue T, Takahashi H. 2009. Controls on the carbon balance of tropical peatlands. Ecosystems 12:873–87.

    Article  CAS  Google Scholar 

  • Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M. 2012. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob Change Biol 18:3410–22.

    Article  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wosten H, Jauhiainen J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–14.

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–71.

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis PM, Greenfield LG, Tilston EL. 2006. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem 38:3130–40.

    Article  CAS  Google Scholar 

  • Hobbie SE, Vitousek PM. 2000. Nutrient regulation of decomposition in Hawaiian montane forests: do the same nutrients limit production and decomposition? Ecology 81:1867–77.

    Article  Google Scholar 

  • Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, Sjögersten S. 2016. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biol Biochem 103:86–96.

    Article  CAS  Google Scholar 

  • Humphrey WD, Pluth DJ. 1996. Net nitrogen mineralization in natural and drained fen peatlands in Alberta, Canada. Soil Sci Soc Am J 60:932–40.

    Article  CAS  Google Scholar 

  • Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H. 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52:603–8.

    Article  PubMed  CAS  Google Scholar 

  • Ismawi SM, Gandaseca S, Ahmed OH. 2012. Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. Int J Phys Sci 7:2225–8.

    Article  CAS  Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H. 2005. Carbon fluxes from a tropical peat swamp forest floor. Glob Change Biol 11:1788–97.

    Article  Google Scholar 

  • Jauhiainen J, Limin S, Silvennoinen H, Vasander H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–14.

    Article  PubMed  Google Scholar 

  • Jauhiainen J, Kerojoki O, Silvennoinen H, Limin S, Vasandar H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature: a passive ecosystem cooling experiment. Environ Res Lett 9:105013.

    Article  CAS  Google Scholar 

  • Jauhiainen J, Silvennoinen H, Könönen M, Limin S, Vasander H. 2016. Management driven changes in carbon mineralization dynamics of tropical peat. Biogeochemistry 129:115–32.

    Article  CAS  Google Scholar 

  • Juszczak R, Augustin J. 2013. Exchange of the greenhouse gases methane and nitrous oxide between the atmosphere and a temperate peatland in central Europe. Wetlands 33:895–907.

    Article  Google Scholar 

  • Khalid H, Zin ZZ, Anderson JM. 1999. Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. J Oil Palm Res 11:63–71.

    Google Scholar 

  • Kimura S, Melling L, Goh KJ. 2012. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years. Geoderma 185:1–5.

    Article  CAS  Google Scholar 

  • Koh LP, Miettinen J, Liew SC, Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA 108:5127–32.

    Article  PubMed  Google Scholar 

  • Könönen M, Jauhiainen J, Laiho R, Kusin K, Vasandar H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16:1–13.

    Google Scholar 

  • Könönen M, Jauhiainen J, Laiho R, Spetz P, Kusin K, Limin S, Vasander H. 2016. Land use increases the recalcitrance of tropical peat. Wetl Ecol Manag 24:717–31.

    Article  Google Scholar 

  • Kroer N. 1993. Bacterial growth efficiency on natural dissolved organic matter. Limnol Oceonogr 38:1282–90.

    Article  CAS  Google Scholar 

  • Krüger JP, Leifeld J, Glatzel S, Szidat S, Alewell C. 2015. Biogeochemical indicators of peatland degradation-a case study of a temperate bog in northern Germany. Biogeosciences 12:2861.

    Article  CAS  Google Scholar 

  • Lim KH, Lim SS, Parish F, Suharto R, Eds. 2012. RSPO manual on best management practices for existing oil palm cultivation on peat. Kuala Lumpur: Roundtable on Sustainable Palm Oil.

    Google Scholar 

  • MacLean D, Wein R. 1978. Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Can J Bot 56:2730–49.

    Article  CAS  Google Scholar 

  • Marwanto S, Agus F. 2014. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures? Mitig Adapt Strateg Glob Change 19:809–19.

    Article  Google Scholar 

  • Melling L, Hatano R, Goh KJ. 2005. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57:1–11.

    Article  Google Scholar 

  • Melling L, Hatano R, Goh KJ. 2007. Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Sci Plant Nutr 53:792–805.

    Article  CAS  Google Scholar 

  • Melling L, Tan C, Goh KJ, Hatano R. 2013. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. J Palm Res 1:44–57.

    Google Scholar 

  • Miettinen J, Hooijer A, Shi C, Tollenaar D, Vernimmen R, Liew SC, Malins C, Page SE. 2012. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. Glob Change Biol Bioenergy 4:908–18.

    Article  Google Scholar 

  • Minkkinen K, Lame J, Shurpali NJ, Mäkiranta P, Alm J, Penttilä T. 2007. Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–26.

    CAS  Google Scholar 

  • Moore JC, Boone RB, Koyama A, Holfelder K. 2014. Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems. Biogeochemistry 117:205–27.

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL. 2006. A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–74.

    Article  Google Scholar 

  • Novita N. 2016. Carbon stocks and soil greenhouse gas emissions associated with forest conversion to oil palm plantations in Tanjung Puting tropical peatlands, Indonesia. PhD dissertation. Oregon State University.

  • Obidzinski K, Andriani R, Komarudin H, Andrianto A. 2012. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecol Soc 17:481–99.

    Article  Google Scholar 

  • Oktarita S, Hergoualc’h K, Anwar S, Verchot L. 2017. Sustantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ Res Lett 12:104007.

    Article  Google Scholar 

  • Page SE, Rieley JO, Shotyk OW, Weiss D. 1999. Interdependence of peat and vegetation in a tropical peat swamp forest. Philos Trans R Soc Lond 354:1885–97.

    Article  CAS  Google Scholar 

  • Page SE, Rieley JO, Banks CF. 2011. Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818.

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fand J et al. 2011a. A large and persistent carbon sink in the world’s forests. Science 333:988–93.

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011b. Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–32.

    Article  Google Scholar 

  • Pardon L, Huth N, Nelson P, Banabas M, Gabrielle B, Bessou C. 2017. Yield and nitrogen losses in oil palm plantations: main drivers and management trade-offs determined using simulation. Field Crops Res 210:20–32.

    Article  Google Scholar 

  • Ponette-González AG, Curran LM, Pittman AM, Carlson KM, Steele BG, Ratnasari D, Weather M, Weathers KC. 2016. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo. Environ Res Lett 11:085003.

    Article  CAS  Google Scholar 

  • Prescott CE. 1995. Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168–169:83–8.

    Article  Google Scholar 

  • Reiley J, Page S. 2008. The science of tropical peatlands and the Central Kalimantan Peatland Development Area. Technical Review Number 1, Master Plan for the Rehabilitation of the Ex-Mega Rice Project Area in Central Kalimantan, Government of Indonesia.

  • Rein G, Cleaver N, Ashton C, Pironi P, Torero JL. 2008. The severity of smouldering peat fires and damage to the forest soil. Catena 74:304–9.

    Article  Google Scholar 

  • Rodionov A, Pätzold S, Welp G, Pallares RC, Damerow L, Amelung W. 2014. Sensing of soil organic carbon using visible and near-infrared spectroscopy at variable moisture and surface roughness. Soil Sci Soc Am J 78:949–57.

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–39.

    Article  CAS  Google Scholar 

  • Santín C, Doerr SH. 2016. Fire effects on soils: the human dimension. Philos Trans R Soc B 371:20150171.

    Article  Google Scholar 

  • Scanlon D, Moore T. 2000. Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–60.

    Article  CAS  Google Scholar 

  • Schimel JP, Weintraub M. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–63.

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knaber I. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Schrier-Uijl AP, Veraart AJ, Leffelaar PA, Berendse F, Veenendaal EM. 2011. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–79.

    Article  CAS  Google Scholar 

  • Shenk JS, Workman JJ, Westerhaus MO. 1992. Application of NIR spectroscopy to agricultural products. In: Burns DA, Ciurczak EW, Eds. Handbook of near-infrared analysis, Vol. 13. New York: Marcel Dekker, Inc. p 383–431.

    Google Scholar 

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M. 2001. The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–67.

    Article  CAS  Google Scholar 

  • Singh N, Abiven S, Torn MS, Schmidt MWI. 2012. Fire derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–57.

    Article  CAS  Google Scholar 

  • Sjögersten S, Caul S, Daniell TJ, Jurd APS, O’Sullivan OS, Stapleton CS, Titman JJ. 2016. Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol Biochem 98:42–53.

    Article  CAS  Google Scholar 

  • Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J. 2010. Visible and near infrared spectroscopy in soil science. In: Sparks D, Ed. Advances in agronomy, Vol. 107. Burlington: Academic Press. p 163–215.

    Google Scholar 

  • Terhoeven-Urselmans T, Michel K, Helfrich M, Flessa H, Ludwig B. 2006. Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J Plant Nutr Soil Sci 169:168–74.

    Article  CAS  Google Scholar 

  • Takakai F, Morishita T, Hashidoko Y, Darung U, Kuramochi K, Dohong S, Limin S, Hatano R. 2006. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Sci Plant Nutr 52:662–74.

    Article  CAS  Google Scholar 

  • Tripathi B, Edwards D, Mendes L, Kim M, Dong K, Kim H, Adams J. 2016. The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Mol Ecol 25:2244–57.

    Article  PubMed  CAS  Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH. 2000. Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:115–22.

    Article  Google Scholar 

  • van Lent J, Hergoualc’h K, Verchot LV. 2015. Reviews and syntheses: soil N2O and NO emissions from land use and land use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12:677–8.

    Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–45.

    Article  CAS  Google Scholar 

  • Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoalc’h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A. 2012. A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–85.

    Article  CAS  Google Scholar 

  • Wight PJ, Ashworth AJ, Allen FL. 2016. Organic substrate, clay type, texture, and water influence on NIR carbon measurements. Geoderma 261:36–43.

    Article  CAS  Google Scholar 

  • Wösten JHM, Ismail AB, Van Wijk ALM. 1997. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36.

    Article  Google Scholar 

  • Workman J, Weyer L. 2008. Practical guide to interpretive near-infrared spectroscopy. Boca Raton: CRC Press.

    Google Scholar 

  • Wright EL, Black CR, Cheesman AW, Drage T, Large T, Turner BL, Sjögersten S. 2011. Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Glob Change Biol 17:2867–81.

    Article  Google Scholar 

  • Wust RAJ, Bustin RM. 2004. Late Pleistocene and Holocene development of the interior peat-accumulating basin of tropical Tasek Bera, Peninsular Malaysia. Palaeogeogr Palaeoclimatol Palaeoecol 211:241–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Swails.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swails, E., Jaye, D., Verchot, L. et al. Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates. Ecosystems 21, 868–885 (2018). https://doi.org/10.1007/s10021-017-0190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0190-4

Keywords

Navigation