Skip to main content
Log in

Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The present experimental study examines the behaviour of slow granular flows, focusing on the details of particle patterns and motions over the depth of a sheared layer. A conveyor belt circuit enclosed in an inclined flume is used to generate steady uniform open-channel flows of dry granules. Particle positions near the transparent sidewall are extracted from video sequences. The Voronoï diagram is then used to characterise the configurations formed by neighbouring grains and to assist particle tracking over successive frames. This allows a qualitative visualisation of the internal structure of the flowing layer, as well as quantitative measurements of lattice defect density and granular velocities at different depths. The response of the depth profiles to different conveyor belt speeds is examined. In addition to the mean and fluctuating velocities, we probe the time and space correlations of the fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic particles. J. Fluid Mech. 130, 186–202 (1983)

    Google Scholar 

  2. Azanza, E., Chevoir, F., Moucheront, P.: Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199–227 (1999)

    Google Scholar 

  3. Zhang, Y., Campbell, C.S.: The interface between fluid-like and solid-like behavior in two-dimensional granular flows. J. Fluid Mech. 237, 541–568 (1992)

    Google Scholar 

  4. Aharonov, E., Sparks, D.: Rigidity phase transition in granular packings. Phys. Rev. E , 60(6), 6890–6896 (1999)

    Google Scholar 

  5. Savage, S.B.: Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377, 1–26 (1998)

    Google Scholar 

  6. Pouliquen, O., Forterre, Y., Le Dizes, S.: Slow dense granular flows as a self-induced process. Adv. Complex Systems. 4(4), 441–450 (2001)

  7. Davies, T.R.H.: Debris flow surges – a laboratory investigation. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Nr. 96, ETH Zürich, (1988)

  8. Hübl, J., Steinwendtner, H.: Estimation of rheological properties of viscous debris flow using a belt conveyor. Phys. Chem. Earth B, 25(9), 751–755 (2000)

    Google Scholar 

  9. Jain, N., Ottino, J.M., Lueptow, R.M.: An experimental study of the flowing granular layer in a rotating tumbler. Phys. Fluids 14(2), 572–582 (2002)

    Google Scholar 

  10. Hsiau, S.S., Shieh, Y.M.: Fluctuations and self-diffusion of sheared granular material flows. J. Rheol. 43, 1049–1066 (1999)

    Google Scholar 

  11. Drake, T.G.: Structural features in granular flows. J. Geophys. Res. 95(B6), 8681–8696 (1990)

    Google Scholar 

  12. Okabe, A., Boots, B., Sugihara, K.: Spatial Tesselations: Concepts and Applications of Voronoï Diagrams. Wiley, (1992)

  13. Richard, P., Oger, L., Lemaitre, J., Samson, L., Medvedev, N.N.: Application of the Voronoï tesselation to study transport and segregation of grains inside 2D and 3D packings of spheres. Gran. Matter 1, 203–211 (1999)

    Google Scholar 

  14. Capart, H., Young, D.L., Zech, Y.: Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32, 121–135 (2002)

    Google Scholar 

  15. Bonamy, D., Daviaud, F., Laurent, L., Mills, P.: Texture of granular surface flows: experimental investigation and biphasic non-local model. Gran. Matter 4, 183–190 (2003)

    Google Scholar 

  16. Spinewine, B., Capart, H., Larcher, M., Zech, Y.: Three-dimensional Voronoï imaging methods for the measurement of near-wall particulate flows. Exp. Fluids 34, 227–241 (2003)

    Google Scholar 

  17. Allen, M.P., Frenkel, D., Gignac, W.: A Monte Carlo simulation study of the two-dimensional melting mechanism. J. Chem. Phys. 78(6), Part II: 4206–4222 (1983)

    Google Scholar 

  18. Kenkel, N.C., Hoskins, J.A., Hoskins, W.D.: Edge effects in the use of area polygons to study competition. Ecology 70, 272–274 (1989)

    Google Scholar 

  19. Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Google Scholar 

  20. Guler, M., Edil, T.B., Bosscher, P.J.: Measurement of particle movement in granular soils using image analysis. J. Comp. Civ. Eng. 13(2), 116–122 (1999)

    Google Scholar 

  21. Veber, P., Dahl, J., Hermansson, R.: Study of the phenomena affecting the accuracy of a video-based Particle Tracking Velocimetry technique. Exp. Fluids 22, 482–488 (1997)

    Google Scholar 

  22. Armanini, A., Capart, H., Fraccarollo, L., Larcher, M.: Rheological stratification in experimental free-surface flows of granular-liquid mixtures. J. Fluid Mech. 532, 269–319 (2005)

    Google Scholar 

  23. van Noije, T.P.C., Ernst, M.H.: Cahn-Hilliard theory for unstable granular fluids. Phys. Rev. E, 61(2), 1765–1782 (2000)

    Google Scholar 

  24. Utter, B., Behringer, R.P.: Self-diffusion in dense granular shear flows. Phys. Rev. E, 69, 031308–1–12 (2004)

    Google Scholar 

  25. Campbell, C.S.: Self-diffusion in granular shear flows. J. Fluid Mech. 348, 85–101 (1997)

    Google Scholar 

  26. Savage, S.B., Dai, R.: Studies of granular shear flows. Wall slip velocities, 'layering' and self-diffusion. Mech. Mater. 16, 225–238 (1993)

    Google Scholar 

  27. Le Caer, G., Ho, J.S.: The Voronoï tesselation generated from eigenvalues of complex random matrixes. J. Phys. A, 23, 3279–3295 (1990)

    Google Scholar 

  28. Caram, H., Hong, D.C.: Random-walk approach to granular flows. Phys. Rev. Lett. 67(7), 828–831 (1991)

    Google Scholar 

  29. Rouse, H.: Modern conceptions of the mechanics of fluid turbulence. Trans. ASCE 102, 532–536 (1937)

    Google Scholar 

  30. Kelley, W.G., Peterson, A.C.: Difference equations. Harcourt Academic Press, (2001)

  31. Campbell, C.S.: The stress tensor for simple shear flows of a granular material. J. Fluid Mech. 203, 449–473 (1989)

    Google Scholar 

  32. Wildman, R.D., Huntley, J.M., Hansen, J.-P.: Self-diffusion of grains in a two-dimensional vibrofluidized bed. Phys. Rev. E, 60(6), 7066–7075 (1999)

    Google Scholar 

  33. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Univ. Press, (1970)

  34. Alder, B.J., Wainwright, T.E.: Decay of the velocity autocorrelation function. Phys. Rev. A, 1(1), 18–21 (1970)

    Google Scholar 

  35. Isobe, M.: Velocity statistics in two-dimensional granular turbulence. Phys. Rev. E, 68, 040301–1–4 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. T. H. Perng - Former affiliation: Department of Civil Engineering, National Central University, Taiwan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perng, A., Capart, H. & Chou, H. Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt. Granular Matter 8, 5–17 (2006). https://doi.org/10.1007/s10035-005-0213-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-005-0213-2

Keywords

Navigation