Skip to main content
Log in

Physical processes within a 2D granular layer during an impact

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this paper, the impact of a block on a coarse granular soil corresponding to rockfall events is investigated using the Discrete Element Method. Different impacting particle and medium characteristics (impact point, impacting particle size and shape, sample height, etc.) are considered. The numerical results first exhibit the physical phenomena involved in the interaction between the impacting particle and the granular medium. The impact process starts with the partial energy exchange from the impacting particle to the soil. This phase is followed by the propagation of a shockwave from the impact point and a wave reflection on the bottom wall of the sample. A second energy exchange from soil particles to the impacting particle can occur if the reflected wave reaches the soil surface before the end of the impact. Based on these investigations, the impacting particle bouncing occurrence diagram is defined for various impacting particle sizes, incident kinematic parameters and sample heights. The bouncing occurrence diagram brings out three impact regimes. For a small impacting particle, the impact is mainly determined by the first interaction between the impacting particle and the soil, whereas for an intermediate-sized impacting particle, the shockwave propagation through the sample is the leading phenomenon. For a large impacting particle, bouncing is associated with the formation of a compact layer below the impacting particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorren L.K.A. (2003) A review of rockfall mechanics and modelling approahces. Prog. Phys. Geogr. 27(1): 69–87

    Article  Google Scholar 

  2. Guzzetti F., Crosta G., Detti R., Agliardi F. (2002) STONE: a computer program for the three dimensional simulation of rock-falls. Comput. Geosci. 28: 1079–1093

    Article  ADS  Google Scholar 

  3. Bozzolo, D., Pamini, R., Hutter, K.: Rockfall analysis—a mathematical model and its test with field data. In: Proceedings of the 5th international symposium on landslides (Lausanne, Switzerland) 1, pp. 555–563 (1988)

  4. Descoeudres, F., Zimmermann, T.: Three-dimensional dynamic calculation of rockfalls. In: Proceedings of the 6th international congress of rock mechanics, Montreal, pp. 337–342 (1987)

  5. Falcetta J.L. (1985) Un nouveau modèle de calcul de trajectoires de blocs rocheux. Rev. Fr. Geotech. 30: 11–17

    Google Scholar 

  6. Kobayashi Y., Harp E.L., Kagawa T. (1990) Simulation of rockfalls triggered by earthquakes. Rock Mech. Rock Eng. 23: 1–20

    Article  ADS  Google Scholar 

  7. Pfeiffer T., Bowen T. (1989) Computer simulation of rockfalls. Bull. Ass. Eng. Geol. 26(1): 135–146

    Google Scholar 

  8. Laouafa S., Nicot F. (2003) Modélisation numérique de l’impact d’un bloc rocheux sur un sol composé d’éboulis. Rev. Fr. Géotech. 109: 87–97

    Google Scholar 

  9. Azzoni, A., Rossi, P.P., Drigo, E., Giani, G.P., Zaninetti, A.: In situ observations of rockfalls analysis parameters. In: Landslides. Balkema Bell (ed.), Rotterdam, pp. 307–314 (1991)

  10. Ciamarra M.P., Lara A.H., Lee A.T., Goldman D.I., Vishik I., Swinney H.L. (2004) Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92(194301): 1–4

    Google Scholar 

  11. Rioual F., Valance A., Bideau D. (2000) Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E. 62: 2450–2459

    Article  ADS  Google Scholar 

  12. Rioual F., Valance A., Bideau D. (2003) Collision process of a bead on a two-dimensional packing: importance of the inter-granular contacts. Europhys. Lett. 61(1): 194–200

    Article  ADS  Google Scholar 

  13. Beladjine, D., Ammi, M., Oger, L., Valance, A.: Collision between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75, 061305, 1–12 (2007)

    Google Scholar 

  14. Beladjine, D., Valance, A., Ammi, M., Oger, L.: Experimental and numerical study of the collision between an incident bead and a three dimensional granular packing. In: Proceedings of international congongress on powders and grains. Stuttgart, Germany, pp. 1207–1210 (2005)

  15. Oger L., Ammi M., Valance A., Beladjine D. (2005) Discrete element method to study the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17: 467–476

    Article  Google Scholar 

  16. Nishida M., Tanaka K., Matsumoto Y. (2004) Discrete element method simulation of the restitutive characteristics of a steel spherical impacting particle from a particulate aggregation. JSME Int. J. 47(3): 438–447

    Article  Google Scholar 

  17. Tanaka K., Nishida M., Kunimochi T., Takagi T. (2002) Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical impacting particle. Powder Technol. 124: 160–173

    Article  Google Scholar 

  18. Toiya M., Hettinga J., Losert W. (2007) 3D imaging of particle motion during penetrometer testing. From microscopic to macroscopic soil mechanics. Granul. Matter 9: 323–329

    Article  Google Scholar 

  19. Itasca Consulting Group: PFC2D Theory and Background. Itasca, Minneapolis (1999)

  20. Cundall P.A., Strack O.D.L. (1979) A discrete numerical model for granular assemblies. Geotechnique 29: 47–65

    Article  Google Scholar 

  21. Cundall, P.A.: Computer simulations of dense spheres assemblies. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials. Elsevier Science Publisher B.V., Amsterdam, pp. 113–123 (1988)

  22. Mindlin R.D., Deresiewicz H. (1953) Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20: 327–344

    MathSciNet  MATH  Google Scholar 

  23. Itasca Consulting Group: PFC2D User’s Manual. Itasca, Minneapolis (1999)

  24. Kirkby M.J., Statham I. (1975) Surface movement and scree formation. J. Geol. 83: 349–362

    Article  ADS  Google Scholar 

  25. Deluzarche R., Cambou B. (2006) Discrete numerical modelling of rockfill dams. Int. J. Numer. Anal. Meth. Geomech. 30: 1075–1096

    Article  Google Scholar 

  26. Bertrand D., Nicot F., Gotteland P., Lambert S., Derache F. (2006) Modelling a geo-composite cell using discrete analysis. Comput. Geotech. 32(8): 564–577

    Article  Google Scholar 

  27. Goodman R.E. (1980) Introduction to Rocks Mechanics. PWS Publishing Company, Boston

    Google Scholar 

  28. Bagi K. (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7: 31–43

    Article  MATH  Google Scholar 

  29. Crassous J., Beladjine D., Valance A. (2007) Impact of a projectile on a granular medium described by a collision model. Phys. Rev. Lett. 99(24): 248001

    Article  ADS  Google Scholar 

  30. Frémond M. (1995) Rigid bodies collisions. Phys. Lett. A 204: 33–41

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Goldsmith, W.: Impact: the theory and physical behaviour of colliding solids. Doved (1960)

  32. Stronge W.J. (2000) Impacts Mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Thornton C., Ning Z. (1998) A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99: 154–162

    Article  Google Scholar 

  34. Campbell C.S. (2003) A problem related to the stability of force chains. Granul. Matter 5: 129–134

    Article  MATH  Google Scholar 

  35. Coste C., Falcon E., Fauve S. (1997) Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E. 56(5): 6104–6117

    Article  ADS  Google Scholar 

  36. Job S., Melo F., Sokolow A., Sen S. (2007) Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10: 13–20

    Article  Google Scholar 

  37. Hostler, S.R., Brennen, C.E.: Pressure wave propagation in granular bed. Phys. Rev. E 72(3): 031303, 1–13 (2005)

    Google Scholar 

  38. Sadd M.H., Adhikari G., Cardoso F. (2000) DEM simulation of wave propagation in granular materials. Powder Technol. 109: 222–233

    Article  Google Scholar 

  39. Somfai E., Roux J.N., Snoeijer J.H., Van Hecke M., Van Saarloos W. (2006) Elastic wave propagation in confined granular systems. Phys. Rev. E. 72(021301): 1–18

    Google Scholar 

  40. Radjai F., Wolf D.E., Jean M., Moreau J.J. (1998) Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1): 61–64

    Article  ADS  Google Scholar 

  41. Wolf, D.E.: Modelling and computer simulation of granular media. In: Hoffmann, K.H., Schreiber, M. (eds.) Computational Physics. Springer, Heidelberg (1996)

  42. Bourrier, F., Nicot, F., Darve, F.: Rockfall modelling: numerical simulation of the impact of a particle on a coarse granular medium. In: Proceedings of 10th international congress on numerical model in geomechanics, Rhodes, pp. 699–705 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Bourrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourrier, F., Nicot, F. & Darve, F. Physical processes within a 2D granular layer during an impact. Granular Matter 10, 415–437 (2008). https://doi.org/10.1007/s10035-008-0108-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-008-0108-0

Keywords

Navigation