Skip to main content
Log in

A finite deformation method for discrete modeling: particle rotation and parameter calibration

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a finite deformation method for 3-D discrete element modeling. In this method particle rotation is explicitly represented using quaternion and a complete set of interactions is permitted between two bonded particles, i.e., normal and tangent forces, rolling and torsional torques. Relative rotation between two particles is decomposed into two sequence-independent rotations, such that an overall torsional and rolling angle can be distinguished and torques caused by relative rotations are uniquely determined. Forces and torques are calculated in a finite deformation fashion, rather than incrementally. Compared with the incremental methods our algorithm is numerically more stable while it is consistent with the non-commutativity of finite rotations. We study the macroscopic elastic properties of a regularly arranged 2-D and 3-D lattice. Using a micro-to-macro approach based on the existence of a homogeneous displacement field, we study the problem of how to choose the particle-scale parameters (normal, tangent, rolling and torsional stiffness) given the macroscopic elastic parameters and geometry of lattice arrangement. The method is validated by reproducing the wing crack propagation and the fracture patterns under uniaxial compression. This study will provide a theoretical basis for the calibration of the DEM parameters required in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall P.A., Stack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Google Scholar 

  2. Luding S.: Cohesive, frictional powders: contact mode for tension. Granul. Matter 10, 235–246 (2008). doi:10.1007/s10035-008-0099-x

    Article  MATH  Google Scholar 

  3. Mora P., Place D.: A lattice solid model for the nonlinear dynamics of earthquakes. Int. J. Mod. Phys. C4, 1059–1074 (1993)

    ADS  Google Scholar 

  4. Mora P., Place D.: Simulation of the friction stick-slip instability. Pure Appl. Geophys. 143, 61–87 (1994). doi:10.1007/BF00874324

    Article  ADS  Google Scholar 

  5. Mora P., Place D.: Numerical simulation of earthquake faults with gouge: towards a comprehensive explanation for the heat flow paradox. J. Geophys. Res. 103, 21067–21089 (1998). doi:10.1029/98JB01490

    Article  ADS  Google Scholar 

  6. Place D., Mora P.: A lattice solid model to simulate the physics of rocks and earthquakes: incorporation of friction. J. Comput. Phys. 150, 332–372 (1999). doi:10.1006/jcph.1999.6184

    Article  MATH  ADS  Google Scholar 

  7. Place D., Lombard F., Mora P., Abe S.: Simulation of the micro-physics of rocks using LSMearth. Pure Appl. Geophys. 159, 1933–1950 (2002). doi:10.1007/s00024-002-8715-x

    Article  Google Scholar 

  8. Toomey A., Bean C.J.: Numerical simulation of seismic waves using a discrete particle scheme. Geophys. J. Int. 141, 595–604 (2000)

    Article  ADS  Google Scholar 

  9. Chang S.H., Yun K.J., Lee C.I.: Modeling of fracture and damage in rock by the bonded-particle model. Geosyst. Eng. 5, 113–120 (2002)

    Google Scholar 

  10. Hazzard J.F., Collins D.S., Pettitt W.S., Young R.P.: Simulation of unstable fault slip in granite using a bonded-particle model. Pure Appl. Geophys. 159, 221–245 (2000a). doi:10.1007/PL00001252

    Article  ADS  Google Scholar 

  11. Hazzard J.F., Young R.P.: Simulation acoustic emissions in bonded-particle models of rock. Int. J. Rock Mech. Min. Sci. 37, 867–872 (2002)

    Google Scholar 

  12. Potyondy D., Cundall P., Lee C.A.: Modelling rock using bonded assemblies of circular particles. In: Hassani, F., Mitri, H. (eds) Rock Mechanics, Balkema, Rotterdam (1996)

    Google Scholar 

  13. Potyondy D., Cundall P.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004). doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  14. Donze F.V., Bouchez J., Magnier S.A.: Modeling fractures in rock blasting. Int. J. Rock Mech. Min. Sci. 34, 1153–1163 (1997). doi:10.1016/S0148-9062(97)00300-8

    Article  Google Scholar 

  15. Hentz S., Daudeville L., Donze F.V.: Identification and validation of a discrete element model for concrete. J. Eng. Mech. 130, 709–719 (2004a). doi:10.1061/(ASCE)0733-9399(2004)130:6(709)

    Article  Google Scholar 

  16. Hentz S., Donze F.V., Daudeville L.: Discrete Element modeling of concrete submitted to dynamics loading at high strain rates. Comput. Struc. 82, 2509–2524 (2004b). doi:10.1016/j.compstruc.2004.05.016

    Article  Google Scholar 

  17. Kun F., Herrmann H.J.: A study of fragmentation process using a discrete element method. Comput. Methods Appl. Mech. Eng. 138, 3–18 (1996). doi:10.1016/S0045-7825(96)01012-2

    Article  MATH  Google Scholar 

  18. Scott D.: Seismicity and stress rotation in a granular model of the brittle crust. Nature 381, 592–595 (1996). doi:10.1038/381592a0

    Article  ADS  Google Scholar 

  19. Wang Y.C., Yin X.C., Ke F.J., Xia M.F., Peng K.Y.: Numerical simulation of rock failure and earthquake process on mesoscopic scale. Pure Appl. Geophys. 157, 1905–1928 (2000). doi:10.1007/PL00001067

    Article  ADS  Google Scholar 

  20. Alonso-Marroquin F., Vardoulakis I., Herrmann H.J., Weatherley D., Mora P.: The effect of rolling on dissipation in fault gouges. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 031306 (2006). doi:10.1103/PhysRevE.74.031306

    ADS  Google Scholar 

  21. Oda M., Konishi J., Nemat-Nasser S.: Experimental micromechanical evaluation of the strength of granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982). doi:10.1016/0167-6636(82)90027-8

    Article  Google Scholar 

  22. Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  23. Oda M., Iwashita K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38, 1713–1740 (2000). doi:10.1016/S0020-7225(99)00132-9

    Article  Google Scholar 

  24. Iwashita K., Oda M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998). doi:10.1061/(ASCE)0733-9399(1998)124:3(285)

    Article  Google Scholar 

  25. Iwashita K., Oda M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000). doi:10.1016/S0032-5910(99)00236-3

    Article  Google Scholar 

  26. Kuhn M.R., Bagi K.: Contact rolling and deformation in granular media. Int. J. Solids Struct. 41, 5793–5820 (2004). doi:10.1016/j.ijsolstr.2004.05.066

    Article  MATH  Google Scholar 

  27. Tordesillas A., Walsh D.C.S.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002). doi:10.1016/S0032-5910(01)00490-9

    Article  Google Scholar 

  28. Sakaguchi H., Muhlhaus H.: Hybrid modeling of coupled pore fluid-solid deformation problems. Pure Appl. Geophys. 157, 1889–1904 (2000). doi:10.1007/PL00001066

    Article  ADS  Google Scholar 

  29. Boutt, D.F., McPherson, B.J.O.L.: Simulation of sedimentary rock deformation: lab-scale model calibration and parameterization. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013987

  30. Matsuda Y., Iwase Y.: Numerical simulation of rock fracture using three-dimensional extended discrete element method. Earth Planets Space. 54, 367–378 (2002)

    ADS  Google Scholar 

  31. Walton K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35, 213–226 (1987). doi:10.1016/0022-5096(87)90036-6

    Article  MATH  ADS  Google Scholar 

  32. Bathurst R.J., Rothenburg L.: Micromechanical aspects of isotropic granular assemblies with linear contact interactions. J. Appl. Mech. 55, 17–23 (1988)

    Article  Google Scholar 

  33. Deresiewicz H.: Stress–strain relations for a simple model of a granular medium. J. Appl. Mech. 25(3), 402–406 (1958)

    MATH  Google Scholar 

  34. Duffy J., Mindlin R.D.: Stress–strain relations and vibrations of a granular medium. J. Appl. Mech. 24(4), 585–593 (1957)

    MathSciNet  Google Scholar 

  35. Duffy J.: A differential stress–strain relation for the hexagonal close-packed array of elastic spheres. J. Appl. Mech. 26, 88–94 (1959)

    MATH  Google Scholar 

  36. Walton K.: The effective elastic moduli of model sediments. Geophys. J. R. 43, 293–306 (1975)

    MATH  ADS  Google Scholar 

  37. Chang C.S., Gao J.: Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation. Acta Mech. 115, 213–229 (1996). doi:10.1007/BF01187439

    Article  MATH  Google Scholar 

  38. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford Science Press, Oxford (1987)

    MATH  Google Scholar 

  39. Rapaport D.C.: The Art of Molecular Dynamic Simulation. Cambridge University press, Cambridge (1995)

    Google Scholar 

  40. Mora P., Place D.: The weakness of earthquake faults. Geophys. Res. Lett. 26, 123–126 (1999)

    Article  ADS  Google Scholar 

  41. Place D., Mora P.: Numerical simulation of localization in a fault zone. Pure Appl. Geophys. 157, 1821–1845 (2000). doi:10.1007/PL00001063

    Article  ADS  Google Scholar 

  42. Mora P., Wang Y.C., Yin C., Place D.: Simulation of the load-unload response ratio and critical sensitivity in the lattice solid model. Pure Appl. Geophys. 159, 2525–2536 (2002). doi:10.1007/s00024-002-8746-3

    Article  ADS  Google Scholar 

  43. Wang Y.C., Mora P., Yin C., Place D.: Statistical tests of load-unload response ratio signals by lattice solid model: implication to tidal triggering and earthquake prediction. Pure Appl. Geophys. 161, 1829–1839 (2004)

    ADS  Google Scholar 

  44. Mora P., Place D.: Stress correlation function evolution in lattice solid elasto-dynamic model of shear and fracture zones and earthquake prediction. Pure Appl. Geophys. 159, 2413–2427 (2002). doi:10.1007/s00024-002-8741-8

    Article  ADS  Google Scholar 

  45. Goldstein H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  46. Evans D.J.: On the representation of orientation space. Mol. Phys. 34, 317–325 (1977). doi:10.1080/00268977700101751

    Article  ADS  Google Scholar 

  47. Evans D.J., Murad S.: Singularity free algorithm for molecular dynamic simulation of rigid polyatomice. Mol. Phys. 34, 327–331 (1977). doi:10.1080/00268977700101761

    Article  ADS  Google Scholar 

  48. Kuipers  J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  49. Wang Y.C., Abe S., Latham S., Mora P.: Implementation of particle-scale rotation in the 3D lattice solid model. Pure Appl. Geophys. 163, 1769–1785 (2006). doi:10.1007/s00024-006-0096-0

    Article  ADS  Google Scholar 

  50. Wang, Y.C.: A complete scheme for modeling 3D interactive rigid body motion with six degrees of freedom and full rigidity. Acta Geotech. (2009) (in press). doi:10.1007/s11440-008-0072-1

  51. Pelenne J.Y., Youssoufi M.S.E., Cherblanc F., Benet J.C.: Mechanical behviour and failure of cohesive granular materials. Int. J. Numer. Anal. Mech. Geomech. 28, 1577–1594 (2004). doi:10.1002/nag.401

    Article  Google Scholar 

  52. Davie C.T., Bicanic N.: Failure criteria for qusi-brittle materials in lattice-type models. Commun. Numer. Methods Eng. 19, 703–713 (2003). doi:10.1002/cnm.626

    Article  MATH  Google Scholar 

  53. Wang, Y.C., Mora, P.: ESyS_Particle: A new 3-D discrete element model with single particle rotation. In: Xing, H.L. (ed.) Advances in Geocomputing. Springer, pp. 183–228 (2009)

  54. Griffiths D.V., Mustoe G.G.W.: Modeling of elastic continuum using a grillage of structural elements based on discrete element concepts. Int. J. Numer. Methods Eng. 50, 1759–1775 (2001). doi:10.1002/nme.99

    Article  MATH  Google Scholar 

  55. Ostoja-Starzewski M.: Lattice models in micromechanics. Appl. Mech. Rev. 55, 35–60 (2002). doi:10.1115/1.1432990

    Article  Google Scholar 

  56. Wang Y.C., Mora P.: Elastic properties of regular lattices and calibration of 3-D Discrete Element Model. J. Mech. Phys. Solids 56, 3459–3474 (2008). doi:10.1016/j.jmps.2008.08.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Daniel I.M., Ishai O.: Engineering mechanics of composite material. Oxford University Press, Oxford (1994)

    Google Scholar 

  58. Brace W.F., Bombolakis E.G.: A note on brittle crack growth in compression. J. Geophys. Res. 68, 3709–3713 (1963). doi:10.1029/JZ068i012p03709

    Article  ADS  Google Scholar 

  59. Wang Y.C., Mora P.: Modeling wing crack extension: implications to the ingredients of discrete element model. Pure Appl. Geophys. 165, 609–620 (2008). doi:10.1007/s00024-008-0315-y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Alonso-Marroquin, F. A finite deformation method for discrete modeling: particle rotation and parameter calibration. Granular Matter 11, 331–343 (2009). https://doi.org/10.1007/s10035-009-0146-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0146-2

Keywords

Navigation