Skip to main content
Log in

A hierarchical approach to simulate the packing density of particle mixtures on a computer

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In many fields of materials science it is important to know how densely a particle mixture can be packed. The “packing density” is the ratio of the particle volume and the volume of the surrounding container needed for a random close packing of the particles. We present a method for estimating the packing density for spherical particles based on computer simulations only, i.e. without the need for additional experiments. Our method is particularly suited for particle mixtures with an extremely wide range of particle diameters as they occur e.g. in modern concrete mixtures. A single representative sample from such mixtures would be much larger than can be handled on present standard computers. In our hierarchical approach the diameter range is therefore divided into smaller intervals. Samples from these limited diameter intervals are drawn and their packing density is estimated from a simulated packing. The results are used to “fill” the interstices in the sample from the next larger particle interval. To account for the interaction between particles of different sizes we include larger particles into the sample of smaller ones. The larger ones act as part of the boundary during the packing. Thus we obtain more realistic estimates of how dense a fraction of particles can be packed within the whole mixture. The focus of this paper is on the divide-and-conquer approach and on how the simulation results from the fractions can be collected into an overall estimate of the packing density. We do not go into details of the simulation technique for the single packing. We compare our results to some experimental data to show that our method works at least as good as the classical analytical models like CPM without the need for any experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreasen A.H.M., Andersen J.: Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten). Colloid Polym. Sci. 50(3), 217–228 (1930)

    Google Scholar 

  2. Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7(1), 31–43 (2005)

    Article  MATH  Google Scholar 

  3. de Larrard F., Sedran T.: Optimization of ultra-high-performance concrete by the use of a packing model. Cement Concr. Res. 24(6), 997–1009 (1994)

    Article  Google Scholar 

  4. de Larrard F., Sedran T.: Mixture-proportioning of high-performance concrete. Cement Concr. Res. 32(11), 1699–1704 (2002)

    Article  Google Scholar 

  5. Fuller W.B., Thompson S.E.: The laws of proportioning concrete. Trans. Am. Soc. Civ. Eng. 59, 67–172 (1907)

    Google Scholar 

  6. Goltermann P., Johansen V., Palbøl L.: Packing of aggregates: an alternative tool to determine the optimal aggregate mix. Mater. J. 94(5), 435–443 (1997)

    Google Scholar 

  7. He D., Ekere N.N., Cai L.: Computer simulation of random packing of unequal particles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 60(6), 7098–7104 (1999)

    ADS  Google Scholar 

  8. Jones M., Zheng L., Newlands M.: Comparison of particle packing models for proportioning concrete constitutents for minimum voids ratio. Mater. Struct. 35(5), 301–309 (2002)

    Article  Google Scholar 

  9. Lochmann K., Anikeenko A., Elsner A., Medvedev N., Stoyan D.: Statistical verification of crystallization in hard sphere packings under densification. Eur. Phys. J. B Condens. Matter Complex Syst. 53(1), 67–76 (2006)

    Article  Google Scholar 

  10. Nolan G.T., Kavanagh P.E.: Computer simulation of random packing of hard spheres. Powder Technol. 72(2), 149–155 (1992)

    Article  Google Scholar 

  11. Raschdorf, S., Kolonko, M.: A comparison of data structures for the simulation of polydisperse particle packings. Int. J. Numer. Meth. Eng. (2010). doi:10.1002/nme.2988

  12. Schmidt, M., Fehling, E., Geisenhanslüke, C. (eds.): Ultra high performance concrete (UHPC). In: Proceedings of the International Symposium on UHPC, volume 3 of Schriftenreihe Baustoffe und Massivbau—Structural Materials and Engineering Series. kassel university press, Kassel (2004)

  13. Stovall T., De Larrard F., Buil M.: Linear packing density model of grain mixtures. Powder Technol. 48(1), 1–12 (1986)

    Article  Google Scholar 

  14. Stroeven, P., Stroeven, M., Bui, D.D.: On optimum packing density. In: Ying-shu, Y., Shah, S.P., Lü, H.-l. (eds). Proceedings of International Conference on Advances in Concrete and Structures, pp. 793–800. Rilem Publications SARL (2003)

  15. Tillé, Y.: Sampling Algorithms. Springer Series in Statistics. Springer-Verlag, New York (2006)

  16. Torquato S.: Random Heterogenous Materials: Microstructure and Macroscopic Properties volume 16 of Interdisciplinary Applied Mathematics. 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  17. Torquato S., Truskett T.M., Debenedetti P.G.: Is random close packing of spheres well defined?. Phys. Rev. Lett. 84(10), 2064–2067 (2000)

    Article  ADS  Google Scholar 

  18. Toufar W., Born M., Klose E.: Beitrag zur Optimierung der Packungsdichte polydisperser körniger Systeme. Freiberger Forschungsheft 558, 29–44 (1976)

    Google Scholar 

  19. Wackenhut M., McNamara S., Herrmann H.J.: A hierarchical model for simulating very polydisperse granular media. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains 2005, pp. 1005–1008. A. A. Balkema, Rotterdam (2005)

    Google Scholar 

  20. Webb M.D., Davis I.L.: Random particle packing with large particle size variations using reduced-dimension algorithms. Powder Technol. 167(1), 10–19 (2006)

    Article  Google Scholar 

  21. Yu A.B., Standish N.: An analytical–parametric theory of the random packing of particles. Powder Technol. 55(3), 171–186 (1988)

    Article  Google Scholar 

  22. Yu A.B., Standish N.: Estimation of the porosity of particle mixtures by a linear-mixture packing model. Ind. Eng. Chem. Res. 30(6), 1372–1385 (1991)

    Article  Google Scholar 

  23. Yu A.B., Zou R.P., Standish N.: Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind. Eng. Chem. Res. 35(10), 3730–3741 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kolonko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolonko, M., Raschdorf, S. & Wäsch, D. A hierarchical approach to simulate the packing density of particle mixtures on a computer. Granular Matter 12, 629–643 (2010). https://doi.org/10.1007/s10035-010-0216-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0216-5

Keywords

Navigation