Skip to main content
Log in

Seismo- and thermodynamics of granular solids

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The recently published theory named Granular Solid Hydrodynamics (GSH) is outlined, supported and quantified with arguments from physics as well as soil mechanics. Seismodynamic equilibria serve to introduce a granular temperature T g and a related entropy s g , both with gradients. The evolution equations of GSH are first presented without gradients, parameters are proposed as functions of T g and estimated. Constant stretching leads to nearly hypoplastic relations for a certain range of T g . Cyclic deformations lead to pulsating T g and to asymptotic cycles of stress and density. State cycles are also attained with additionally imposed isochoric deformations (ratcheting). Similar attractors can be obtained with elastoplastic or hypoplastic relations with hidden variables. GSH is then presented with gradients and boundary conditions. Consequences for stabilization and destabilization are outlined by means of the total energy and with driven attractors. Conclusions and an outlook indicate that GSH is going to become a powerful unified concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 10 (1996)

    Article  Google Scholar 

  2. Darwin, G.H.: On the horizontal thrust of a mass of sand. In: Minutes Proceedings Inst. Civ. Eng., pp. 350–378 (1983)

  3. Matsushita, M., Tatsuoka, F., Koseki, J., Cazacliu, B., di Benedetto, H., Yasin, S.J.M.: Time effects on the pre-peak deformation properties of sands. In: International Conference Pre-Failure Deformation Characteristics of Geomaterials, pp. 681–689 (1999)

  4. Gudehus, G., Goldscheider, M., Winter, H.: Mechanical Properties of Sand and Clay and Numerical Integration Methods: Some Sources of Errors and Bounds of Accuracy, pages 121–150 Balkema, (1977)

  5. Gudehus G.: Seismo-hypoplasticity with a granular temperature. Granular Matter 8(2), 93–102 (2006)

    Article  MATH  Google Scholar 

  6. Niemunis A.: Extended hypoplastic models for soils. Polytechnica, Gdansk (2003)

    Google Scholar 

  7. Barkan D.D.: Dynamics of Bases and Foundations. McGraw-Hill Book Company, New York (1962)

    Google Scholar 

  8. Valanis, K.C., Peters, J.F., Gill, J.: Configurational entropy, non-associativity and uniqueness in granular media. Acta Mechanica, p. 100. (1993)

  9. Herrmann H.J.: On the thermodynamics of granular media. J. Phys. II France 3, 427–433 (1993)

    Article  Google Scholar 

  10. Edwards, S.F., Oakeshott, R.B.S.: Granular matter: An interdisciplinary approach. Phys. A 157, (1989)

  11. Kondic L., Behringer R.P.: Elastic energy, fluctuations and temperature for granular materials. Europhys. Lett. 67(2), 205–211 (2004)

    Article  ADS  Google Scholar 

  12. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Butterworth-Heinemann, Oxford (1987)

    MATH  Google Scholar 

  13. Landau L.D., Lifshitz E.M.: Theory of Elasticity. Butterworth-Heinemann, Oxford (1986)

    Google Scholar 

  14. Khalatnikov I.M.: Introduction to the Theory of Superfluidity. Benjamin, New York (1965)

    Google Scholar 

  15. de Groot S.R., Masur P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  16. de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1993)

    Google Scholar 

  17. Müller H.W., Liu M.: Structure of ferro-fluiddynamics. Phys. Rev. E 64, 061405 (2001)

    Article  ADS  Google Scholar 

  18. Müller O., Hahn D., Liu M.: Non-Newtonian behaviour in ferrofluids and magnetization relaxation. J. Phys. Condens. Matter 18, 2623 (2006)

    Article  Google Scholar 

  19. Temmen H., Pleiner H., Liu M., Brand H.R.: Convective nonlinearity in non-Newtonian fluids. Phys. Rev. Lett. 84(15), 3228–3231 (2000)

    Article  ADS  Google Scholar 

  20. Müller, O.: Die Hydrodynamische Theorie Polymerer Fluide. PhD thesis, University of Tübingen (2006)

  21. Kadanoff L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71(1), 435–444 (1999)

    Article  ADS  Google Scholar 

  22. Jiang Y., Liu M.: Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91(14), 144301 (2003)

    Article  ADS  Google Scholar 

  23. Jiang Y., Liu M.: Energetic instability unjams sand and suspension. Phys. Rev. Lett 93(14), 148001 (2004)

    Article  ADS  Google Scholar 

  24. Jiang Y., Liu M.: A brief review of granular elasticity. Eur. Phys. J. E Soft Matter 22(3), 255 (2007)

    Article  Google Scholar 

  25. Jiang Y., Liu M.: From elasticity to hypoplasticity: dynamics of granular solids. Phys. Rev. Lett 99(10), 105501 (2007)

    Article  ADS  Google Scholar 

  26. Jiang Y., Liu M.: Granular solid hydrodynamics. Granular Matter 11, 139 (2009)

    Article  Google Scholar 

  27. Jiang Y., Liu M.: The physics of granular mechanics. In: Kolymbas, D., Viggiani, G. (eds) Mechanics of Natural Solids, pp. 27–46. Springer, Berlin (2009)

    Chapter  Google Scholar 

  28. Guyon E., Troadec J.P.: Du sac de billes au tas de sable. Odile Jacob, Paris (1994)

    Google Scholar 

  29. Pacheco-Martinez H., Jan van Gerner H., Ruiz-Suárez J.C.: Storage and discharge of a granular fluid. Phys. Rev. E 77, 021303 (2008)

    Article  ADS  Google Scholar 

  30. Pöschel Th., Luding St.: Granular Gases. Springer, Berlin (2001)

    Book  Google Scholar 

  31. Huber, G., Wienbroer, H.: Vibro-viscosity and granular temperature of cylindrical grain skeletons-experiments. In: Herrmann, H., Garcia-Rojo, R., McNamara, S., (eds.) Powders and Grains 05, p. 287–290 (2005)

  32. Luong, M.P.: Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In: Proceedings of IUTAM Conference on Deformation and Failure of Granular Materials, pp. 239–246 Delft (1982)

  33. Kolymbas D., Wu W.: Introduction to hypoplasticity. In: Kolymbas, D. (ed.) Modern Approaches to Plasticity, pp. 213–224. Elsevier, Amsterdam (1983)

    Google Scholar 

  34. Wu W., Bauer E.: A hypoplastic model for barotropy and pyknotropy of granular soils. In: Kolymbas, D. (ed.) Modern Approaches to Plasticity, pp. 225–246. Elsevier, Amsterdam (1983)

    Google Scholar 

  35. Tatsuoka, F., Di Benedetto, H., Enomoto, T., Kawabe, S., Kongkitkul, W.: Various viscosity types of geomaterials in shear and their mathematical expression. Soils Found 48(1), (2008)

  36. Huber, G.: Asymptotic beaviour of sand in resonant-column tests. Granular Matter (2010) (under preparation)

  37. Youd, T.L.: Compaction of sands by repeated shear straining. In: Journal of Soil Mechanical and Found Engineering Division, ASCE, vol. 7, pp. 709–725 (1972)

  38. Wichtmann, L., Niemunis, A., Triantafyllidis, T.: On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils. Int. J. Numer. Anal. Meth. Geomech. (2009) (submitted)

  39. Wichtmann T., Niemunis A., Triantafyllidis T.: Experimental evidence of a unique flow rule of non-cohesive soils under high-cyclic loading. Acta Geotechnica 1, 59–73 (2006)

    Article  Google Scholar 

  40. Niemunis A., Wichtmann T., Triantafyllidis Th.: A high-cycle accumulation model for sand. Comput. Geotech. 2(4), 245–263 (2005)

    Article  Google Scholar 

  41. Wichtmann, T.: Explicit accumulation model for non-cohesive soils under cyclic loading. PhD thesis, Institut Grundbau und Bodenmech. Ruhr-Univ., Bochum, Germany, Heft 38 (2005)

  42. Ibsen L.B.: The stable state in cyclic triaxial testing on sand. Soil Dyn. Earthq. Eng. 13, 63–72 (1994)

    Article  Google Scholar 

  43. Niemunis, A., Prada, A.: Lessons from fe implementation of sanisand and hypoplasticity. (2010) (in preparation)

  44. Sturm, H.: Stabilisation behaviour of cyclically loaded shallow foundations for offshore wind turbines. PhD thesis, University of Karlsruhe (2009)

  45. Triantafyllidis N.: Dynamic stiffness of rigid rectangular foundations on the half-space. Earthqu. Eng. Struct. Dyn. 14, 391–411 (1986)

    Article  Google Scholar 

  46. Rebstock, D.: Stressing and relaxation of sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudehus, G., Jiang, Y. & Liu, M. Seismo- and thermodynamics of granular solids. Granular Matter 13, 319–340 (2011). https://doi.org/10.1007/s10035-010-0229-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0229-0

Keywords

Navigation