Skip to main content

Advertisement

Log in

Aggregate breakage under dynamic loading

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Numerical simulations with the Discrete Element Method are used to study agglomerate breakage under two different kinds of dynamic loading: normal impact and shear loading. Simple mechanical models based on energy balance are developed herein for each one and show good agreement with the results of the simulations. For impact, damage is found to depend on a dimensionless number N i , which describes the ratio of the incoming kinetic energy to the internal bonding energy. For shear loading, damage is shown to depend on another dimensionless number N f which describes the ratio of the frictional work to the internal bonding energy. The friction force is first modelled as a solid-like friction force, then the model is improved by using a granular frictional force. The two types of loading as damaging processes are then compared. These results appear to be consistent with the available experimental data on impact and abrasion wear tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews E.W., Kim K.S.: Threshold conditions for dynamic fragmentation of ceramic particles. Mech. Mater. 29(3–4), 161–180 (1998)

    Article  Google Scholar 

  2. Andrews E.W., Kim K.S.: Threshold conditions for dynamic fragmentation of glass particles. Mech. Mater. 31(11), 689–703 (1999)

    Article  Google Scholar 

  3. Arbiter N., Harris C.C., Stamboltzis G.A.: Single fracture of brittle spheres. Trans. SME 244, 118–133 (1969)

    Google Scholar 

  4. Attal M., Lave J.: Pebble erosion by interparticle collision during fluvial transport: experimental results and implications for the evolution of sediment load along rivers. J. Geophys. Res. F. Earth Surf. 114, F04023 (2009)

    Article  Google Scholar 

  5. Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7(1), 31–43 (2005)

    Article  MATH  Google Scholar 

  6. Behera B., Kun F., McNamara S., Herrmann H.J.: Fragmentation of a circular disc by impact on a frictionless plate. J. Phys. Conden. Matter 17(24), S2439–S2456 (2005)

    Article  ADS  Google Scholar 

  7. Carmona H.A., Wittel F.K., Kun F., Herrmann H.J.: Fragmentation processes in impact of spheres. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77(5), 243–253 (2008)

    Article  Google Scholar 

  8. Chang C.S., Chao S.J., Chang Y.: Estimates of elastic moduli for granular material with anisotropic random packing structure. Int. J. Solids Struct. 32(14), 1989–2008 (1995)

    Article  MATH  Google Scholar 

  9. Chau K.T., Wei X.X., Wong R.H.C., Yu T.X.: Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses. Mech. Mater. 32(9), 543–554 (2000)

    Article  Google Scholar 

  10. Chenje T., Radziszewski P.: Determining the steel media abrasive wear as a function of applied force and friction. Miner. Eng. 17(11–12), 1255–1258 (2004)

    Article  Google Scholar 

  11. Cundall P.A., Strack O.D.L.: Discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  12. Czichos H., Klaffke D., Santner E., Woydt M.: Advances in tribology: the materials point of view. Wear 190(2), 155–161 (1995)

    Article  Google Scholar 

  13. Estrada, N., Taboada, A., Radjai, F.: Role des parametres locaux de cohesion dans la resistance mecanique d’un milieu granulaire cohesif. 18eme Congres Francais de Mecanique, Grenoble 27–31 aout 2007 (2007)

  14. Farrow, J.W., Sklar, L.S.: Lithologic influence and experimental variability in gravel abrasion: implications for predicting rates of downstream fining of river bed sediments. GSA Cordilleran Section Annual Meeting, Geological Society of America Abstracts with Programs 37(4) (2005)

  15. Fillot N., Iordanoff I., Berthier Y.: Modelling third body flows with a discrete element method-a tool for understanding wear with adhesive particles. Tribol. Int. 40(6), 973–981 (2007)

    Article  Google Scholar 

  16. Godet M.: The third-body approach: a mechanical view of wear. Wear 100(1–3), 437–452 (1984)

    Article  Google Scholar 

  17. Gorham D.A., Salman A.D.: The failure of spherical particles under impact. Wear 258(1–4), 580–587 (2005)

    Article  Google Scholar 

  18. Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  ADS  Google Scholar 

  19. Kafui K.D., Thornton C.: Computer simulated impact of agglomerates. In: Thornton, C. (ed.) Powders and Grains, pp. 401–406. Balkema, Rotterdam (1993)

    Google Scholar 

  20. Khanal M., Morrison R.: Discrete element method study of abrasion. Miner. Eng. 21(11), 751–760 (2008)

    Article  Google Scholar 

  21. Khanal M., Schubert W., Tomas J.: Ball impact and crack propagation—simulations of particle compound material. Granul. Matter 5(4), 177–184 (2004)

    Article  Google Scholar 

  22. Kodama Y.: Downstream changes in the lithology and grain size of fluvial gravels, the Watarase River, Japan: evidence of the role of abrasion in downstream fining. J. Sediment. Res A Sediment. Petrol. Process. 64((1), 68–75 (1994)

    Google Scholar 

  23. Kuenen P.H.: Experimental abrasion of pebbles: 2. Rolling by currents. J. Geol. 64, 336–368 (1956)

    Article  ADS  Google Scholar 

  24. Meng H.C., Ludema K.C.: Wear models and predictive equations: their form and content. Wear 181–183(PART 2), 443–457 (1995)

    Article  Google Scholar 

  25. Mishra B.K.: A review of computer simulation of tumbling mills by the discrete element method: part I-contact mechanics. Int. J. Miner. Process. 71(1–4), 73–93 (2003)

    Article  Google Scholar 

  26. Moreno-Atanasio R., Ghadiri M.: Mechanistic analysis and computer simulation of impact breakage of agglomerates: effect of surface energy. Chem. Eng. Sci. 61(8), 2476–2481 (2006)

    Article  Google Scholar 

  27. Morrison R.D., Cleary P.W.: Using DEM to model ore breakage within a pilot scale SAG mill. Miner. Eng. 17(11–12), 1117–1124 (2004)

    Article  Google Scholar 

  28. Prochnow, M.: Ecoulements denses de grains secs. Phd thesis, Ecole Nationale des Ponts et Chaussees (2002)

  29. Salman A.D., Biggs C.A., Fu J., Angyal I., Szab M., Hounslow M.J.: An experimental investigation of particle fragmentation using single particle impact studies. Powder Technol. 128(1), 36–46 (2002)

    Article  Google Scholar 

  30. Srinath G., Gnanamoorthy R.: Two-body abrasive wear characteristics of Nylon clay nanocomposites–effect of grit size, load, and sliding velocity. Mater. Sci. Eng. A. 435–436, 181–186 (2006)

    Google Scholar 

  31. Srinath G., Gnanamoorthy R.: Effect of organoclay addition on the two-body abrasive wear characteristics of polyamide 6 nanocomposites. J. Mater. Sci. 42(19), 8326–8333 (2007)

    Article  ADS  Google Scholar 

  32. Subero, J., Ghadiri, M.:Breakage patterns of agglomerates. Powder Technol. 120(3), 232–243 (2001)

    Article  Google Scholar 

  33. Thornton C., Ciomocos M., Adams M.: Numerical simulations of agglomerate impact breakage. Powder Technol. 105, 74–82 (1999)

    Article  Google Scholar 

  34. Thornton C., Yin K.K., Adams M.J.: Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D Appl. Phys. 29(2), 424–435 (1996)

    Article  ADS  Google Scholar 

  35. Vogel L., Peukert W.: Breakage behaviour of different materials–construction of a mastercurve for the breakage probability. Powder Technol. 129(1–3), 101–110 (2003)

    Article  Google Scholar 

  36. Wu S.Z., Chau K.T., Yu T.X.: Crushing and fragmentation of brittle spheres under double impact test. Powder Technol. 143–144, 41–55 (2004)

    Article  Google Scholar 

  37. Zhou F., Molinari J.F., Ramesh K.T.: Effects of material properties on the fragmentation of brittle materials. Int. J. Fract. 139(2), 169–196 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Le Bouteiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bouteiller, C., Naaim, M. Aggregate breakage under dynamic loading. Granular Matter 13, 385–393 (2011). https://doi.org/10.1007/s10035-010-0235-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0235-2

Keywords

Navigation