Skip to main content
Log in

Micro-scale modeling of anisotropy effects on undrained behavior of granular soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a micro-scale modeling of fabric anisotropy effects on the mechanical behavior of granular assembly under undrained conditions using discrete element method. The initial fabrics of the numerical samples engendered from the deposition under gravity are measured, quantified and compared, where the gravitational field can be applied in different directions to generate varying anisotropy orientations. The samples are sheared under undrained biaxial compression, and identical testing conditions are applied, with samples having nearly the same anisotropy intensities, but with different anisotropy directions. The macroscopic behaviors are discussed for the samples, such as the dilatancy characteristics and responses at the critical state. And the associated microstructure changes are further examined, in terms of the variables in the particulate scale, with the focus on the fabric evolution up to a large deformation reaching the critical state. The numerical analysis results compare reasonably well with available experimental data. It is also observed that at critical state, in addition to the requirements by classical critical state theory, a unique fabric structure has also been developed, and might be independent of its initial fabric. This observation is coincided with the recent theoretical achievement of anisotropic critical state theory. Finally, a general framework is introduced for quantifying and modeling the anisotropy effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Bedding angle with respect to horizontal axis during gravitational deposition of sample preparation

\(\sigma _{x},\sigma _{y}\) :

Principal stresses along \(x\) and \(y\) directions respectively

\(p,q\) :

Mean normal stress and deviatoric stress respectively

\(CN\) :

Coordination number

\(\varepsilon _{a}\) :

Axial strain along \(y\) direction

\(D\) :

Dilatancy

\({\varvec{\varepsilon }} _v^p ,{\varvec{\varepsilon }} _q^p \) :

Plastic volumetric and deviatoric strains respectively

\(F_{ij}\) :

Fabric tensor

\(F^{{\prime }}_{ij}\) :

Fabric tensor by an orthogonal rotation

\(\vartheta \) :

Orthogonal rotation angle of fabric tensor

\(F_{11}, F_{22},\) :

Components of fabric tensor \(F_{ij}\) in

\(F_{12}\) :

two-dimension

\(F_{1},F_{2}\) :

Principal values of fabric tensor \(F_{ij}\)

\(\Delta ,\varphi \) :

Intensity and principal direction (with respect to horizontal axis) of fabric tensor \(F_{ij}\)

\(\Delta ^{p}, \varphi ^{p}\) :

Intensity and principal direction fabric tensor \(F_{ij}\) in terms of particle orientation

\(\Delta ^{c}, \varphi ^{c}\) :

Intensity and principal direction fabric tensor \(F_{ij}\) in terms of contact unit normal

\(\Delta ^{b},\varphi ^{b}\) :

Intensity and principal direction fabric tensor \(F_{ij}\) in terms of branch vector orientation

\(\mu \) :

Inter-particle friction

\({\varvec{\sigma }}_{ij},{\mathop {{\varvec{\sigma }}}\limits ^\frown }_{ij}\) :

Stress tensor and deviatoric direction of stress tensor respectively

\(A\) :

Anisotropic state parameter

References

  1. Riemer, M.F., Seed, R.B.: Factors affecting apparent position of steady-state line. J. Geotech. Geoenviron. Eng. 123, 281–288 (1997)

    Article  Google Scholar 

  2. Yoshimine, M., Ishihara, K., Vargas, W.: Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soil Found. 38(3), 179–188 (1998)

    Article  Google Scholar 

  3. Nakata, Y., Hyodo, M., Yasufuku, N.: Flow deformation of sands subjected to principal stress rotation. Soil Found. 38(2), 115–128 (1998)

    Article  Google Scholar 

  4. Yang, Z.X., Li, X.S., Yang, J.: Undrained anisotropy and rotational shear in granular soil. Géotechnique 57(4), 371–384 (2007)

    Article  Google Scholar 

  5. Yang, Z.X., Li, X.S., Yang, J.: Quantifying and modelling fabric anisotropy of granular soils. Geotechnique 58(4), 237–248 (2008)

    Google Scholar 

  6. Miura, S., Toki, S.: A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. Soil Found. 22(1), 61–77 (1982)

    Article  Google Scholar 

  7. Tatsuoka, F., Ochi, K., Fujii, S., Okamoto, M.: Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soil Found. 26(3), 23–41 (1986)

    Article  Google Scholar 

  8. Vaid, Y.P., Sivathayalan, S., Stedman, D.: Influence of specimen reconstituting method on the undrained response of sand. Geotech. Test. J. 22, 187–195 (1999)

    Article  Google Scholar 

  9. Papadimitriou, A.G., Dafalias, Y.F., Yoshimine, M.: Plasticity modeling of the effect of sample preparation method on sand response. Soil Found. 40(2), 109–124 (2005)

    Google Scholar 

  10. Arthur, J.R.F., Menzies, B.: Inherent anisotropy in a sand. Geotechnique 22, 115–128 (1972)

    Article  Google Scholar 

  11. Been, K., Jefferies, M.G.: A state parameter for sands. Geotechnique 35, 99–112 (1985)

    Article  Google Scholar 

  12. Vaid, Y.P., Thomas, J.: Liquefaction and post liquefaction behaviour of sand. J. Geotech. Eng. ASCE 121, 163–173 (1985)

    Article  Google Scholar 

  13. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: the role of fabric. J. Eng. Mech. ASCE 138, 263–275 (2012)

    Article  Google Scholar 

  14. Li, X.S., Dafalias, Y.F.: Constitutive modeling of inherently anisotropic sand behavior. J. Geotech. Geoenviron. Eng. ASCE 128, 868–880 (2002)

    Article  Google Scholar 

  15. Oda, M.: The mechanism of fabric changes during compressional deformation of sand. Soil Found. 12(2), 1–18 (1972)

    Article  Google Scholar 

  16. Jang, D.J., Frost, J.D., Park, J.Y.: Preparation of epoxy impregnated sand coupons for image analysis. Geotech. Test. J. 22, 147–158 (1999)

    Google Scholar 

  17. Muhunthan, B., Masad, E., Assaad, A.: Measurement of uniformity and anisotropy in granular materials. Geotech. Test. J. 23, 423–431 (2000)

    Article  Google Scholar 

  18. Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evolution of strength of granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982)

    Article  Google Scholar 

  19. Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soil Found. 25(3), 85–97 (1985)

    Article  Google Scholar 

  20. Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of a 2D-granular material: rotation between structure evolution and loading path. Mech. Cohesive Frict. Mater. 2, 121–163 (1997)

    Article  Google Scholar 

  21. Wood, D.A., Leśniewska, D.: Stresses in granular materials. Granul. Matter 13, 395–415 (2011)

    Article  Google Scholar 

  22. Chang, C.S., Matsushima, T., Lee, X.: Heterogeneous strain and bounded granular structure change in triaxial specimen studied by computer tomography. J. Eng. Mech. ASCE 129, 1295–1307 (2003)

    Article  Google Scholar 

  23. Wang, L.B., Frost, J.D., Lai, J.S.: Three dimensional digital representation of granular material microstructure from X-ray tomography imaging. J. Comput. Civil Eng. ASCE 18, 28–35 (2004)

    Google Scholar 

  24. Alshibli, K.A., Alramahi, B.A.: Microscopic evaluation of strain distribution in granular materials during shear. J. Geotech. Geoenviron. Eng. ASCE 32, 80–91 (2006)

    Article  Google Scholar 

  25. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465–481 (1998)

    Article  Google Scholar 

  26. Oda, M., Takemura, T., Takahashi, M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Geotechnique 54, 539–542 (2004)

    Article  Google Scholar 

  27. Takemura, T., Takahashi, M., Oda, M.: Three-dimensional fabric analysis for anisotropic material using multi-directional scanning line-application to X-ray CT image. Mater. Trans. 48(6), 1173–1178 (2007)

    Article  Google Scholar 

  28. Nouguier-Lehon, C., Cambou, B., Vincens, E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Methods Geomech. 27, 1126–1207 (2003)

    Article  Google Scholar 

  29. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    Article  MATH  Google Scholar 

  30. Cheng, Y.P., Bolton, M.D., Nakata, Y.: Grain crushing and critical states observed in DEM simulations. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powder and Grains, pp. 1393–1397. Taylor & Francis Group, London (2005)

    Google Scholar 

  31. Peña, A.A., García-Rojo, G., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  MATH  Google Scholar 

  32. Peña, A.A., Lizcano, A., Alonso-Marroquín, F., Herrmann, H.J.: Biaxial test simulations using a packing of polygonal particles. Int. J. Numer. Anal. Methods Geomech. 32, 143–160 (2008)

    Article  MATH  Google Scholar 

  33. PFC2D User’s Manual. Itasca Consulting Group, Inc., Minneapolis, USA (2005)

  34. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  35. Ishihara, K.: Soil Behavior in Earthquake Geotechnics. Oxford Science, Oxford (1996)

    Google Scholar 

  36. Yimsiri, S., Soga, K.: Effects of soil fabric on behaviors of granular soils: microscopic modeling. Comput. Geotech. 38, 861–874 (2011)

    Article  Google Scholar 

  37. Oda, M.: Fabric tensors and its geometrical meaning. In: Oda, M., Iwashita, K. (eds.), Introduction to Mechanics of Granular Materials. Balkema, Rotterdam, pp. 27–35 (1999)

  38. Curray, J.R.: Analysis of two-dimensional orientation data. J. Geol. 64, 117–131 (1956)

    Article  ADS  Google Scholar 

  39. Li, X.S., Dafalias, Y.F.: A thermodynamic perspective of fabric enhanced critical state soil mechanics and the uniqueness of critical state line. In: Third International Workshop on Modern Trends in Geomechanics IW-MTG3, UK, pp. 4–6 (2012)

  40. Yang, Z.X., Yang, J., Wang, L.Z.: On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis. Granul. Matter 14(3), 433–447 (2012)

    Article  Google Scholar 

  41. Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Soil Found. 12(1), 17–36 (1972)

    Article  Google Scholar 

  42. Vaid, Y.P., Chern, J.C.: Cyclic and monotonic undrained response of sands. In: Proceedings of the ASCE Convention in Advances in the Art of Testing Soils Under Cyclic Loading Conditions, Detroit, pp. 120–147 (1985)

  43. Ishihara, K., Tatsuoka, F., Yasua, S.: Undrained deformation and liquefaction of sand under cyclic stresses. Soil Found. 15(1), 29–44 (1975)

    Article  Google Scholar 

  44. Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Geotechnique 8(1), 22–53 (1958)

    Article  Google Scholar 

  45. Schofield, A.N., Wroth, C.P.: Critical state soil mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  46. Wood, D.M., Maeda, K.: Changing grading of soil: effect on critical states. Acta Geotech. 3, 3–14 (2008)

    Article  Google Scholar 

  47. Bandini, V., Coop, M.R.: The influence of particle breakage on the location of the critical state line of sands. Soil Found. 51(4), 591–600 (2011)

    Article  Google Scholar 

  48. Li, X.S., Yang, Z.X.: Sand response beyond triaxial space—torsional testing. In: 25th National Geotechnial Testing Symposium, Hangzhou, China, pp. 24–34 (2008)

  49. Tobita, Y.: Contact tensor in constitutive model for granular materials. In: Satake, M., Jenkins, J. (eds.) Proceedings of the US–Japan Seminar on Micromechanics of Granular Materials, Sendai-Zao, Japan. Elsevier, New York, pp. 263–270 (1988)

Download references

Acknowledgments

The financial support provided by the Research Grants Council (HKU 7191/05E) is acknowledged. The first author is also grateful for support by Natural Science Foundation of China (Nos. 50808159 and 51178421) and project of Zhejiang Education Department (No. N20110091) and Zhejiang provincial natural science foundation (No. Y1110181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z.X., Yang, J. & Wang, L.Z. Micro-scale modeling of anisotropy effects on undrained behavior of granular soils. Granular Matter 15, 557–572 (2013). https://doi.org/10.1007/s10035-013-0429-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0429-5

Keywords

Navigation