Skip to main content
Log in

Mechanisms for acoustic emissions generation during granular shearing

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Shear deformation of granular media leads to continual restructuring of particle contact network and mechanical interactions. These changes to the mechanical state include jamming of grains, collisions, and frictional slip of particles—all of which present abrupt perturbations of internal forces and release of strain energy. Such energy release events typically result in the generation of elastic waves in the kHz frequency range, termed acoustic emissions (AE). The close association between grain-scale mechanics and AE generation motivated the use of AE as surrogate observations to assess the mechanical state of complex materials and granular flows. The study characterizes AE generation mechanisms stemming from grain-scale mechanical interactions. Basic mechanisms are considered, including frictional slip between particles, and mechanical excitation of particle configurations during force network restructuring events. The intrinsic frequencies and energy content of generated AEs bear the signature of source mechanisms and of structural features of the grain network. Acoustic measurements in simple shear experiments of glass beads reveal distinct characteristics of AE associated with different source mechanisms. These findings offer new capabilities for non-invasive interrogation of micromechancial interactions and linkage to a stochastic model of shear zone mechanics. Certain statistical features of restructuring events and associated energy release during shearing were predicted with a conceptual fiber-bundle model (FBM). In the FBM the collective behavior of a large number of basic mechanical elements (representing e.g. grain contacts), termed fibers, reproduces the reaction of disordered materials to progressive loading. The failure of fibers at an individual threshold force corresponds to slipping of a particle contact or a single rearrangement event of the granular network. The energy release from model fiber breakage is the equivalent to elastic energy from abrupt grain rearrangement events and provides an estimate of the energy available for elastic wave generation. The coupled FBM–AE model was in reasonable agreement with direct shear experiments that were performed on large granular assemblies. The results underline the potential of using AE as a diagnostic tool to study micro-mechanical interactions, shear failure and mobilization in granular material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vardoulakis, I.: Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Methods 4(2), 103–119 (1980)

    Article  MATH  Google Scholar 

  2. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  3. Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods 28(4), 279–321 (2004)

    Article  Google Scholar 

  4. Liu, Ch., Nagel, S.R.: Sound in sand. Phys. Rev. Lett. 68(15), 2301–2304 (1992)

    Article  ADS  Google Scholar 

  5. Jia, X., Caroli, C., Velicky, B.: Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82(9), 1863–1866 (1999)

    Article  ADS  Google Scholar 

  6. Velea, D., Shields, F.D., Sabatier, J.M.: Elastic wave velocities in partially saturated ottawa sand: experimental results and modeling. Soil Sci. Soc. Am. J. 64(4), 1226–1234 (2000)

    Article  Google Scholar 

  7. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majmudar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269(5223), 513–515 (1995)

    Article  ADS  Google Scholar 

  8. Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57(3), 3164–3169 (1998)

    Article  ADS  Google Scholar 

  9. Løvoll, G., Måløy, K.J., Flekkøy, E.G.: Force measurements on static granular materials. Phys. Rev. E 60(5), 5872–5878 (1999)

  10. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(1079), 1079–1082 (2005)

    Article  ADS  Google Scholar 

  11. Veje, C.T., Howell, D.W., Behringer, R.P.: Kinematics of a two-dimensional granular couette experiment at the transition to shearing. Phys. Rev. E 59(1), 739–745 (1999)

    Article  ADS  Google Scholar 

  12. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  ADS  Google Scholar 

  13. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Albert, I., Tegzes, P., Kahng, B., Albert, R., Sample, J.G., Pfeifer, M., Barabási, A.L., Vicsek, T., Schiffer, P.: Jamming and fluctuations in granular drag. Phys. Rev. Lett. 84(22), 5122–5125 (2000)

    Article  ADS  Google Scholar 

  15. Geng, J., Behringer, R.P.: Slow drag in two-dimensional granular media. Phys. Rev. E 71(1), 011302 (2005)

    Article  ADS  Google Scholar 

  16. Métayer, J.F., Suntrup III, D.J., Radin, C., Swinney, H.L., Schröter, M.: Shearing of frictional sphere packings. Europhys. Lett. 93(6), 64003 (2011)

    Article  ADS  Google Scholar 

  17. Hutchings, I.M.: Energy absorbed by elastic waves during plastic impact. J. Phys. D Appl. Phys. 12(11), 1819 (1979)

    Article  ADS  Google Scholar 

  18. McLaskey, G.C., Glaser, S.D.: Micromechanics of asperity rupture during laboratory stick slip experiments. Geophys. Res. Lett. 38(12), L12302 (2011)

    Article  ADS  Google Scholar 

  19. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bardenhagen, S.G., Brackbill, J.U.: Dynamic stress bridging in granular material. J. Appl. Phys. 83(11), 5732–5740 (1998)

    Article  ADS  Google Scholar 

  21. Owens, E.T., Daniels, K.E.: Sound propagation and force chains in granular materials. Europhys. Lett. 94(5), 54005 (2011)

    Article  ADS  Google Scholar 

  22. Cody, G.D., Goldfarb, D.J., Storch, G.V., Norris, A.N.: Particle granular temperature in gas fluidized beds. Powder Technol. 87(3), 211–232 (1996)

    Article  Google Scholar 

  23. Gardel, E., Seitaridou, E., Facto, K., Keene, E., Hattam, K., Easwar, N., Menon, N.: Dynamical fluctuations in dense granular flows. Philos. Trans. R. Soc. A 367(1909), 5109–5121 (2009)

    Article  ADS  Google Scholar 

  24. Michlmayr, G., Or, D., Cohen, D.: Fiber bundle models for stress release and energy bursts during granular shearing. Phys. Rev. E 86, 06130 (2012)

    Article  Google Scholar 

  25. Michlmayr, G., Cohen, D., Or, D.: Shear induced force fluctuations and acoustic emissions in granular material. J. Geophys. Res. 118(12), 6086–6098 (2013)

    Article  ADS  Google Scholar 

  26. Hidalgo, R.C., Grosse, C.U., Kun, F., Reinhardt, H.W., Herrmann, H.J.: Evolution of percolating force chains in compressed granular media. Phys. Rev. Lett. 89(20), 205501 (2002)

    Article  ADS  Google Scholar 

  27. Turcotte, D.L., Newman, W.I., Shcherbakov, R.: Micro and macroscopic models of rock fracture. Geophys. J. Int. 152(3), 718–728 (2003)

    Article  ADS  Google Scholar 

  28. Hertz, H.: Über die Berührung fester elastischer Körper (On the contact of elastic solids). Journal für die reine und angewandte Mathematik 92, 156–171 (1882). For English translation see Miscellaneous papers by Hertz, H. (eds). Jones and Schott. Macmillian, London (1896)

  29. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Pergamon Press, Oxford (1986)

    Google Scholar 

  30. Bracewell, R.N.: The Fourier Transform and Its Applications, 2nd edn. McGraw-Hill, New York (1986)

    Google Scholar 

  31. Hunter, S.: Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 5(3), 162–171 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  33. Mair, K., Hazzard, J.F.: Nature of stress accommodation in sheared granular material: insights from 3d numerical modeling. Earth Planet Sci. Lett. 259(3–4), 469–485 (2007)

    Article  ADS  Google Scholar 

  34. Welker, P., McNamara, S.: Precursors of failure and weakening in a biaxial test. Granul. Matter 13, 93–105 (2011)

    Article  Google Scholar 

  35. Pohlman, N.A., Severson, B.L., Ottino, J.M., Lueptow, R.M.: Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation. Phys. Rev. E 73(3), 031304 (2006)

    Article  ADS  Google Scholar 

  36. Zaitsev, S.I.: Robin Hood as self-organized criticality. Physica A Stat. Mech. Appl. 189(3–4), 411–416 (1992)

    Article  ADS  Google Scholar 

  37. Buldyrev, S.V., Ferrante, J., Zypman, F.R.: Dry friction avalanches: experiment and theory. Phys. Rev. E 74(6), 066110 (2006)

    Article  ADS  Google Scholar 

  38. Sammonds, P., Ohnaka, M.: Evolution of microseismicity during frictional sliding. Geophys. Res. Lett. 25(5), 699–702 (1998)

    Article  ADS  Google Scholar 

  39. Yabe, Y.: Rate dependence of AE activity during frictional sliding. Geophys. Res. Lett. 29(10), 1388 (2002)

    Article  ADS  Google Scholar 

  40. Mair, K., Marone, C., Young, R.P.: Rate dependence of acoustic emissions generated during shear of simulated fault gouge. Bull. Seismol. Soc. Am. 97(6), 1841–1849 (2007)

    Article  Google Scholar 

  41. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010)

    Article  ADS  Google Scholar 

  42. Somfai, E., Roux, J.N., Snoeijer, J.H., van Hecke, M., van Saarloos, W.: Elastic wave propagation in confined granular systems. Phys. Rev. E 72(2), 021301 (2005)

    Article  ADS  Google Scholar 

  43. Schmitz, T.L., Smith, K.S.: Mechanical Vibrations: Modeling and Measurement. Springer, New York (2012)

    Book  Google Scholar 

  44. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. 87(32), 4987–5016 (2007)

    Article  ADS  Google Scholar 

  45. Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41(6), 715–728 (2009)

    Article  Google Scholar 

  46. Raischel, F., Kun, F., Hidalgo, R.C., Herrmann, H.J.: Statistical Damage Models: Fiber Bundle Models, chapter Statistical Damage Models: Fiber Bundle Models, pp. 443–471. Universität Stuttgart (2006)

  47. Dalton, F., Petri, A., Pontuale, G.: A random neighbour model for yielding. J. Stat. Mech. Theory Exp. 2010(3), P03011 (2010)

  48. Pradhan, S., Hemmer, P.C.: Prediction of the collapse point of overloaded materials by monitoring energy emissions. Phys. Rev. E 83(4), 041116 (2011)

    Article  ADS  Google Scholar 

  49. Peires, F.T.: Tensile tests for cotton yarns V. The weakest link: theorems on the strength of long composite specimens. J. Text. Inst. 17, T355–T368 (1926)

    Article  Google Scholar 

  50. Daniels, H.E.: The statistical theory of the strength of bundles of threads. 1. Proc. R. Soc. A 183(995), 405–435 (1945)

  51. Timár, G., Kun, F.: Crackling noise in three-point bending of heterogeneous materials. Phys. Rev. E 83(4), 046115 (2011)

    Article  ADS  Google Scholar 

  52. Raischel, F., Kun, F., Herrmann, H.J.: Simple beam model for the shear failure of interfaces. Phys. Rev. E 72(4), 046126 (2005)

    Article  ADS  Google Scholar 

  53. Halász, Z., Kun, F.: Slip avalanches in a fiber bundle model. Europhys. Lett. 89(2), 26008 (2010)

    Article  ADS  Google Scholar 

  54. Halasz, Z., Kun, F.: Fiber bundle model with stick-slip dynamics. Phys. Rev. E 80(2), 027102 (2009)

    Article  ADS  Google Scholar 

  55. Kruyt, N.P., Antony, S.J.: Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. Phys. Rev. E 75(5), 051308 (2007)

    Article  ADS  Google Scholar 

  56. Skempton, A., Bishop, A.: The measurement of the shear strength of soils. Geotechnique 2(2), 98–108 (1950)

    Article  Google Scholar 

  57. Thornton, C., Zhang, L.: Numerical simulations of the direct shear test. Chem. Eng. Technol. 26(2), 153–156 (2003)

    Article  Google Scholar 

  58. Cui, L., O’Sullivan, C.: Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Geotechnique 56(7), 455–468 (2006)

    Article  Google Scholar 

  59. Liu, S.H.: Simulating a direct shear box test by dem. Can. Geotech. J. 43(2), 155–168 (2006)

    Article  Google Scholar 

  60. Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Muhlhaus, H.B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of “Triggering of Rapid Mass Movements” (TRAMM) funded by the Competence Center Environment and Sustainability (CCES) of the ETH domain (Switzerland). The authors wish to thank Daniel Breitenstein for his technical support with the experimental work presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Michlmayr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michlmayr, G., Or, D. Mechanisms for acoustic emissions generation during granular shearing. Granular Matter 16, 627–640 (2014). https://doi.org/10.1007/s10035-014-0516-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0516-2

Keywords

Navigation