Skip to main content
Log in

A composite particle model for non-spherical particles in DEM simulations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a composite particle model with sphere clumps for modelling non-spherical particles in discrete element method (DEM) simulations. The formulation of the sphere clumps uses random selections of particle radii and positions, thus it can theoretically simulate all possible non-spherical particles encountered in engineering projects. In this study, the generation of sphere clumps in space was discussed in detail, and different particle non-sphericities were compared. This numerical model has been employed to study the shear behaviour of granular assemblies under undrained triaxial compression conditions. It is evident that the use of composite particle model in the DEM can largely increase the shear strengths of granular assemblies. For granular samples consisting of various types of sphere clumps, different mechanical responses have been observed. In particular, the sphere clumps with high non-sphericity can lead to very high peak/residual shear strength, and high material internal friction angle. The use of sphere clumps mixture can modulate the shear behaviour, with its mechanical properties being close to those of real quartz sand grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Series A Math. Phys. Sci. 269(1339), 500–527 (1962)

    Article  ADS  Google Scholar 

  2. Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice. Wiley, London (1996)

    Google Scholar 

  3. Barrett, P.J.: The shape of rock particles, a critical review. Sedimentology 27(3), 291–303 (1980)

    Article  ADS  Google Scholar 

  4. Muhlhaus, H.B., Vardoulakis, I.: The thickness of shear bands in granular materials. Geotechnique 37(3), 271–283 (1987)

    Article  Google Scholar 

  5. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  6. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  7. Bardet, J.P., Proubet, J.: A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique 41(4), 599–613 (1991)

    Article  Google Scholar 

  8. Ting, J.M., Corkum, B.T., Kauffman, C.R., Greco, C.: Discrete numerical-model for soil mechanics. J. Geotechn. Eng. ASCE. 115(3), 379–398 (1989)

    Article  Google Scholar 

  9. Rothenburg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique 42(1), 79–95 (1992)

    Article  Google Scholar 

  10. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000)

    Article  MathSciNet  Google Scholar 

  11. Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech Mater 1(4), 269–283 (1982)

    Article  Google Scholar 

  12. Oda, M., Kazama, H.: Micro-structure of shear band and its relation to the mechanism of dilatancy and failure of granular soils. Geotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  13. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009)

    Article  Google Scholar 

  14. Houlsby, G.T.: Potential particles: a method for modelling non-circular particles in DEM. Comput. Geotech. 36(6), 953–959 (2009)

    Article  Google Scholar 

  15. Boon, C.W., Houlsby, G.T., Utili, S.: A new contact detection algorithm for three-dimensional non-spherical particles. Powder Technol. 248, 94–102 (2013)

    Article  Google Scholar 

  16. Williams, K.C., Chen, W., Weeger, S., Donohue, T.J.: Particle shape characterisation and its application to discrete element modelling. Particuology 12, 80–89 (2014)

    Article  Google Scholar 

  17. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. ASCE. 124(3), 285–292 (1998)

    Article  Google Scholar 

  18. Ferellec, J.-F., McDowell, G.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010)

    Article  MATH  Google Scholar 

  19. Ma, G., Zhou, W., Chang, X.L., Yuan, W.: Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int. J. Geomech. 14(4), 1–12 (2014)

    Article  Google Scholar 

  20. Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part I: numerical model and validations. Powder Technol. 224, 374–389 (2012)

    Article  Google Scholar 

  21. Boon, C.W., Houlsby, G.T., Utili, S.: A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput. Geotech. 44, 73–82 (2012)

  22. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    Article  Google Scholar 

  23. de Bono, J.P., McDowell, G.R.: An insight into the yielding and normal compression of sand with irregularly-shaped particles using DEM. Powder Technol. 271, 270–277 (2015)

    Article  Google Scholar 

  24. Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: From theoretical developments to applications. ChEnS. 127, 425–465 (2015)

    Google Scholar 

  25. Dong, K., Wang, C., Yu, A.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. ChEnS. 126, 500–516 (2015)

    Google Scholar 

  26. Guises, R., Xiang, J., Latham, J.-P., Munjiza, A.: Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granul. Matter. 11(5), 281–292 (2009)

    Article  MATH  Google Scholar 

  27. Jia, X., Gan, M., Williams, R.A., Rhodes, D.: Validation of a digital packing algorithm in predicting powder packing densities. Powder Technol. 174(1–2), 10–13 (2007)

    Article  Google Scholar 

  28. Zhao, X.L., Evans, T.M.: Numerical analysis of critical state behaviors of granular soils under different loading conditions. Granul. Matter. 13(6), 751–764 (2011)

    Article  Google Scholar 

  29. Bardet, J.P.: Observations on the effects of particle rotations on the failure of idealized granular-materials. Mech. Mater. 18(2), 159–182 (1994)

    Article  Google Scholar 

  30. Shigeto, Y., Sakai, M.: Parallel computing of discrete element method on multi-core processors. Particuology 9(4), 398–405 (2011)

    Article  Google Scholar 

  31. Chen, F., Ge, W., Guo, L., He, X., Li, B., Li, J., et al.: Multi-scale HPC system for multi-scale discrete simulation—development and application of a supercomputer with 1 Petaflops peak performance in single precision. Particuology 7(4), 332–335 (2009)

    Article  Google Scholar 

  32. Fraige, F.Y., Langston, P.A., Chen, G.Z.: Distinct element modelling of cubic particle packing and flow. Powder Technol. 186(3), 224–240 (2008)

    Article  Google Scholar 

  33. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations, Part II–experimental validation. ChEnS 65(22), 5863–5871 (2010)

    Google Scholar 

  34. Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N.: Distinct element modelling of non-spherical frictionless particle flow. ChEnS 59(2), 425–435 (2004)

    Google Scholar 

  35. Abe, S., Place, D., Mora, P.: A parallel implementation of the lattice solid model for the simulation of rock mechanics and earthquake dynamics. Pure Appl. Geophys. 161(11–12), 2265–2277 (2004)

    ADS  Google Scholar 

  36. Utili, S., Zhao, T., Houlsby, G.T.: 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng. Geol. 186, 3–16 (2015)

    Article  Google Scholar 

  37. Damasceno, P.F., Engel, M., Glotzer, S.C.: Predictive self-assembly of polyhedra into complex structures. Science 337(6093), 453–457 (2012)

    Article  ADS  Google Scholar 

  38. Fang, H.-Y.: Foundation Engineering Handbook. CBS Publishers & Distributors, New Delhi (1991)

    Book  Google Scholar 

  39. Huang, W.X., Sun, D.A., Sloan, S.W.: Analysis of the failure mode and softening behaviour of sands in true triaxial tests. Int. J. Solids Struct. 44(5), 1423–1437 (2007)

    Article  MATH  Google Scholar 

  40. Casagli, N., Ermini, L., Rosati, G.: Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods. Eng. Geol. 69(1–2), 83–97 (2003)

  41. Crosta, G.B., Frattini, P., Fusi, N.: Fragmentation in the Val Pola rock avalanche, Italian Alps. J. Geophys. Res. Earth Surf. 112(F1), F01006 (2007)

  42. Lee, S.J., Hashash, Y.M.A., Nezami, E.G.: Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech. 43, 92–100 (2012)

    Article  Google Scholar 

  43. Modenese, C.: Numerical Study of the Mechanical Properties of Lunar Soil by the Discrete Element Method. D.Phil Thesis: University of Oxford (2013)

  44. Thornton, C., Antony, S.J.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. Lond. Series A Math. Phys. Eng. Sci. 356(1747), 2763–2782 (1998)

    Article  MATH  ADS  Google Scholar 

  45. Praastrup, U., Jakobsen, K.P., Ibsen, L.B.: Two theoretically consistent methods for analysing triaxial tests. Comput. Geotech. 25(3), 157–170 (1999)

    Article  Google Scholar 

  46. Iwashita, K.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(285), 285–292 (1998)

    Article  Google Scholar 

  47. Lube, G., Huppert, H.E., Sparks, R.S., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E. 72, 1–10 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the research grant from the ‘Program of Young Scholars from Renowned Universities or Institutes’ at Sichuan University, National Program on Key basic Research Project (No. 2015CB057903), National Natural Science Foundation of China (No. 51374149), Program for New Century Excellent Talents in University (NCET-13-0382) and the Youth Science and Technology Fund of Sichuan Province (2014JQ0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dai.

Additional information

T. Zhao was formerly at the Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Dai, F., Xu, N.W. et al. A composite particle model for non-spherical particles in DEM simulations. Granular Matter 17, 763–774 (2015). https://doi.org/10.1007/s10035-015-0596-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0596-7

Keywords

Navigation