Skip to main content
Log in

Numerical and experimental verification of a damping model used in DEM

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a study on the damping ratio \(({\upbeta })\) used in discrete element simulations. Physical experiments are performed by dropping particles from a predetermined height. Two kinds of granular particles, aluminum and steel spheres, are used. The size of these particles are the same. The process of particle depositing under gravity is simulated using the discrete element method. The experimental observation is compared with the numerical result to identify the appropriate \({\upbeta }\). The result indicates that the appropriate damping ratio used in discrete element simulations is between 0.2 and 0.3 %. Various \({\upbeta }\) are then used in the numerical simulations to study the effect of \({\upbeta }\) on the dropping process. The final height of the sample relates to \({\upbeta }\) and the drop height. The effect of \({\upbeta }\) is more profound for small drop height. For greater drop height, the effect of \({\upbeta }\) is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Cundall, P.A., Strack, O.D.L.: The development of constitutive laws for soil using the distinct element method. Numer. Methods Geomech. 1, 289–317 (1979)

    Google Scholar 

  2. Landry, H., Lague, C., Roberge, M.: Discrete element representation of manure products. Comput. Electron. Agric. 51(1), 17–34 (2006)

    Article  Google Scholar 

  3. Ng, T.T.: Input parameters of discrete element methods. J. Eng. Mech. 132(7), 723–729 (2006)

    Article  Google Scholar 

  4. Grima, A.P., Wypych, P.W.: Investigations into calibration for discrete element modelling of granular materials. In: Proceedings of the \(6^{\rm th}\) International Conference for Conveying and Handling of Particulate Solids, Brisbane, Australia (2009)

  5. Grima, A.P., Wypych, P.W.: Investigation into calibration of discrete element model parameters for scale-up and validation of particle-structure interactions under impact conditions. Powder Technol. 212(1), 198–209 (2011)

    Article  Google Scholar 

  6. Grima, A.P., Wypych, P.W.: Development and validation of calibration methods for discrete element modelling. Granul. Matter 13(2), 127–132 (2011)

    Article  Google Scholar 

  7. Zhang, D., Whiten, W.J.: The calculation of contact forces between particles using spring and damping models. Powder Technol. 88(1), 59–64 (1996)

    Article  Google Scholar 

  8. Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. EPL Europhys. Lett. 86(6), 60007 (2009)

    Article  ADS  Google Scholar 

  9. Durda, D.D., Movshovitz, N., Richardson, D.C., Asphaugb, E., Morganb, A., Rawlingsd, A.R., Vestd, C.: Experimental determination of the coefficient of restitution for meter-scale granite spheres. Icarus 211(1), 849–855 (2011)

  10. Montaine, M., Heckel, M., Kruelle, C., Schwager, T., Pöschel, T.: Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84(4), 041306 (2011)

    Article  ADS  Google Scholar 

  11. Imre, B., Räbsamen, S., Springman, S.M.: A coefficient of restitution of rock materials. Comput. Geosci. 34(4), 339–350 (2008)

    Article  ADS  Google Scholar 

  12. Güttler, C., Heißelmann, D., Blum, J., Krijt, S.: Normal Collisions of Spheres: A literature survey on available experiments. arXiv:1204.0001 (2012)

  13. King, H., White, R., Maxwell, I., Menon, N.: Inelastic impact of a sphere on a massive plane: nonmonotonic velocity-dependence of the restitution coefficient. EPL Europhys. Lett. 93(1), 14002 (2011)

    Article  ADS  Google Scholar 

  14. Mao, K., Wang, M.Y., Xu, Z., Chen, T.: DEM simulation of particle damping. Powder Technol. 142(2), 154–165 (2004)

    Article  Google Scholar 

  15. Fang, X., Tang, J., Luo, H.: Granular damping analysis using an improved discrete element approach. J. Sound Vib. 308(1), 112–131 (2007)

    Article  ADS  Google Scholar 

  16. Sun, Q., Jin, F., Zhou, G.G.D.: Energy characteristics of simple shear granular flows. Granul. Matter 15(1), 119–128 (2013)

    Article  Google Scholar 

  17. Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13(4), 503–510 (2011)

    Article  Google Scholar 

  18. Bridges, F.G., Supulver, K.D., Lin, D.N.C., Knightc, R., Zafrac, M.: Energy loss and sticking mechanisms in particle aggregation in planetesimal formation. Icarus 123(2), 422–435 (1996)

    Article  ADS  Google Scholar 

  19. Ng, T.T., Zhou, W., Ma, G., Chang, X.L.: Damping and particle mass in DEM simulations under gravity. J. Eng. Mech. 141(6), 04014167 (2014)

    Article  Google Scholar 

  20. Ng, T.T.: Triaxial test simulations with discrete element method and hydrostatic boundaries. J. Eng. Mech. 130(10), 1188–1194 (2004)

    Article  Google Scholar 

  21. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  22. Maeda, K., Hirabayashi, H.: Influence of grain properties on macro mechanical behaviours of granular media by DEM. J. Appl. Mech. 9, 623–630 (2006)

    Article  Google Scholar 

  23. Weir, G., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60(13), 3637–3647 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 51379161 and 51322905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Ma, X., Ng, TT. et al. Numerical and experimental verification of a damping model used in DEM. Granular Matter 18, 1 (2016). https://doi.org/10.1007/s10035-015-0597-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-015-0597-6

Keywords

Navigation