Skip to main content
Log in

Anisotropy of elasticity and fabric of granular soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Anisotropy of elasticity is a very important feature of granular soils. In this paper, numerical experiments using discrete element method were performed to emulate drained triaxial tests and simple shear tests at different stress levels. From these numerical experiments the macroscopic elasticity parameters were determined. The results show that at isotropic stress states the stiffness of the numerical specimen increases, while the Poisson’s ratio decreases with increasing confining pressure. The small strain shear modulus of the numerical specimen agrees well with the laboratory experimental results on a specimen with similar conditions. At anisotropic stress states, there is a threshold stress ratio (\({ SR}_{\mathrm{th}}\)), which characterizes the degrees of stiffness change and fabric change during the shearing. When the stress ratio (SR) is less than \({ SR}_{\mathrm{th}}\), the microscopic contact number does not change and its distribution remains nearly isotropic, while the distribution of contact forces change and become anisotropic to resist the applied anisotropic stress. Therefore the stiffness anisotropy of the specimen mainly results from the anisotropy of contact forces. When SR is larger than \({ SR}_{\mathrm{th}}\), however, the contact number decreases significantly in the minor principal stress direction resulting in the fabric anisotropy, along with the adjustments of contact forces. The stiffness anisotropy of the specimen results from both the fabric anisotropy and the contact force anisotropy. It also indicates that the stress normalized stiffness may be used as an index of the degree of fabric anisotropy. Moreover, the Poisson’s ratio of the specimen increases continuously with increasing stress ratio and its anisotropy can be approximately related to the stiffness anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Richart, F.E., Hall, J.R., Woods, R.D.: Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  2. Yang, J., Yan, X.R.: Site response to multi-directional earthquake loading: a practical procedure. Soil Dyn. Earthq. Eng. 29(4), 710–721 (2009)

    Article  MathSciNet  Google Scholar 

  3. Clayton, C.R.I.: Stiffness at small strain: research and practice. Géotechnique 61(1), 5–38 (2001)

    Article  Google Scholar 

  4. Dong, Y.P., Burd, H., Houlsby, G., Hou, Y.M.: Advanced finite element analysis of a complex deep excavation case history in Shanghai. Front. Struct. Civ. Eng. 8(1), 93–100 (2014)

    Article  Google Scholar 

  5. Andrus, R.D., Stokoe, K.H.I.I.: Liquefaction resistance of soils from shear-wave velocity. J. Geotech. Geoenviron. Eng. ASCE 126(11), 1015–1025 (2000)

    Article  Google Scholar 

  6. Zhou, Y.G., Chen, Y.M.: Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. J. Geotech. Geoenviron. Eng. ASCE 133(8), 959–972 (2007)

    Article  Google Scholar 

  7. Moon, S.-W., Ku, T.: Development of global correlation models between in-situ stress-normalized shear wave velocity and soil unit weight for plastic soils. Can. Geotech. J. 53(10), 1600–1611 (2016)

    Article  Google Scholar 

  8. Fioravante, V., Jamiolkowski, M., Lo Presti, D.C.F., Manfredini, G., Pedroni, S.: Assessment of the coefficient of the earth pressure at rest from shear wave velocity measurements. Géotechnique 48(5), 657–666 (1998)

    Article  Google Scholar 

  9. Ku, T., Mayne, P.W.: Evaluating the in situ lateral stress coefficient (\(\text{ K }_{0}\)) of soils via paired shear wave velocity modes. J. Geotech. Geoenviron. Eng. ASE 139(5), 775–787 (2013)

    Article  Google Scholar 

  10. Hardin, B.O., Richart, F.E.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. ASCE 89(SM1), 39–56 (1963)

    Google Scholar 

  11. Hoque, E., Tatsuoka, F.: Anisotropy in elastic deformation of granular materials. Soils Found. 38(11), 163–179 (1998)

    Article  Google Scholar 

  12. Hoque, E., Tatsuoka, F.: Effects of stress ratio on small-strain stiffness during triaxial shearing. Géotechnique 54(7), 429–439 (2004)

    Article  Google Scholar 

  13. Kuwano, R., Jardine, R.J.: On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52(10), 727–749 (2002)

    Article  Google Scholar 

  14. Ezaoui, A., Di Benedetto, H.: Experimental measurements of the global anisotropic elastic behavior of dry Hostun sand during triaxial tests, and the effect of sample preparation. Géotechnique 59(7), 621–635 (2009)

    Article  Google Scholar 

  15. Gu, X.Q., Yang, J., Huang, M.S.: Laboratory measurements of small strain properties of dry sands by bender element. Soils Found. 53(5), 735–745 (2013)

    Article  Google Scholar 

  16. Gu, X.Q., Yang, J., Huang, M.S., Gao, G.Y.: Bender element tests in dry and saturated sand: signal interpretation and result comparison. Soils Found. 55(5), 952–963 (2015)

    Article  Google Scholar 

  17. Jiang, G.L., Tatsuoka, F., Flora, A., Koseki, J.: Inherent and stress-state-induced anisotropy in very small strain stiffness of a sandy gravel. Géotechnique 47(3), 509–521 (1997)

    Article  Google Scholar 

  18. Li, Q., Ng, C.W.W., Liu, G.B.: Determination of small-strain stiffness of Shanghai clay on prismatic soil specimen. Can. Geotech. J. 49(8), 986–993 (2012)

    Article  Google Scholar 

  19. Bellotti, R., Jamiolkowski, M., Lo Presti, D.C.F., O’Neill, D.A.: Anisotropy of small strain stiffness in Ticino sand. Géotechnique 46(1), 115–131 (1996)

    Article  Google Scholar 

  20. Fioravante, V.: Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing. Soils Found. 40(4), 129–142 (2000)

    Article  Google Scholar 

  21. Ishibashi, I., Capar, O.F.: Anisotropy and its relation to liquefaction resistance of granular material. Soils Found. 43(5), 149–159 (2003)

    Article  Google Scholar 

  22. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2009)

    Google Scholar 

  23. Gu, X.Q., Yang, J., Huang, M.S.: DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granul. Matter 15(3), 287–298 (2013)

    Article  Google Scholar 

  24. Hicher, P.Y., Chang, C.S.: Anisotropic nonlinear elastic model for particulate materials. J. Geotech. Geoenviron. Eng. ASCE 132(8), 1052–1061 (2006)

    Article  Google Scholar 

  25. Vaid, Y.P., Sivathayalan, S., Stedman, D.: Influence of specimen reconstituting method on the undrained response of sand. Geotech. Test. J. 22(3), 187–195 (1999)

    Article  Google Scholar 

  26. Wong, R.K.S., Arthur, J.R.F.: Induced and inherent anisotropy in sand. Géotechnique 35(4), 471–481 (1985)

    Article  Google Scholar 

  27. Tatsuoka, F., Ochi, K., Fujii, S., Okamoto, M.: Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soils Found. 26(3), 23–41 (1986)

    Article  Google Scholar 

  28. Sze, H.Y., Yang, J.: Failure modes of sand in undrained cyclic loading: impact of sample preparation. J. Geotech. Geoenviron. Eng. ASCE 140(1), 152–169 (2014)

    Article  Google Scholar 

  29. Yang, Z.X., Li, X.S., Yang, J.: Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58(4), 237–248 (2008)

    Article  Google Scholar 

  30. Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985)

    Article  Google Scholar 

  31. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005)

    Article  ADS  Google Scholar 

  32. Yimsiri, S., Soga, K.: Micromechanics-based stress–strain behaviour of soils at small strains. Géotechnique 50(5), 559–571 (2000)

    Article  Google Scholar 

  33. Walton, K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35(2), 213–226 (1987)

    Article  ADS  MATH  Google Scholar 

  34. Chang, C.S., Misra, A., Sundaram, S.S.: Properties of granular packing under low amplitude cyclic loading. Soil Dyn. Earthq. Eng. 10(4), 201–211 (1991)

    Article  Google Scholar 

  35. Liao, C.L., Chan, T.C., Suiker, A.S.J., Chang, C.S.: Pressure-dependent elastic moduli of granular assemblies. Int. J. Numer. Anal. Met. 24(3), 265–279 (2000)

    Article  MATH  Google Scholar 

  36. Lade, P.V., Nelson, R.B.: Modelling the elastic behavior of granular materials. Int. J. Numer. Anal. Met. 11(5), 521–542 (1987)

    Article  Google Scholar 

  37. Dong, J.J., Pan, Y.W.: Micromechanics model for elastic stiffness of non-spherical granular assembly. Int. J. Numer. Anal. Met. 23(11), 1075–1100 (1999)

    Article  MATH  Google Scholar 

  38. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  39. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  40. Gu, X.Q., Huang, M.S., Qian, J.G.: DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 16(1), 91–106 (2014)

    Article  Google Scholar 

  41. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y.: DEM study of the state parameter. Géotechnique 64(12), 954–965 (2014)

    Article  Google Scholar 

  42. Kuhn, M.R., Renken, H.E., Mixsell, A.D., Kramer, S.L.: Investigation of cyclic liquefaction with discrete element simulations. J. Geotech. Geoenviron. Eng. ASCE 140(12), 04014075 (2014)

    Article  Google Scholar 

  43. Cundall, P.A., Jenkins, J.T., Ishibashi, I.: Evolution of elastic moduli in a deforming granular assembly. In: Biarez, J., Gourves, R. (eds.) Powders and Grains, pp. 319–322. Balkema, Rotterdam (1989)

    Google Scholar 

  44. Ng, T.T., Petrakis, E.: Small-strain response of random arrays of spheres using discrete element method. J. Eng. Mech. ASCE 122(3), 239–244 (1996)

    Article  Google Scholar 

  45. Gu, X.Q., Yang, J.: A discrete element analysis of elastic properties of granular materials. Granul. Matter 15(2), 139–147 (2013)

    Article  Google Scholar 

  46. Magnanimo, V., La Ragione, L., Jenkins, J.T., Wang, P., Makse, H.A.: Characterizing the shear and bulk moduli of an idealized granular material. Europhys. Lett. 81(3), 34006 (2008)

  47. Agnolin, I., Roux, J.N.: Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76(6), 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. Wang, Y.H., Mok, C.M.B.: Mechanisms of small-strain shear modulus anisotropy in soils. J. Geotech. Geoenviron. Eng. ASCE 134(10), 1516–1530 (2008)

  49. Kumar, N., Luding, S., Magnanimo, V.: Macroscopic model with anisotropy based on micro-macro information. Acta Mech. 225(8), 2319–2343 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Itasca: Particle Flow Code (\(\text{ PFC }^{3D}\)) Manual. Itasca Consulting Group, Inc., Minneapolis (2003)

  51. Dobry, R., Ng, T.T.: Discrete modelling of stress–strain behavior of granular media at small and large strains. Eng. Comput. 9, 129–143 (1992)

    Article  Google Scholar 

  52. Duffy, J., Mindlin, R.D.: Stress–strain relations and vibrations of a granular medium. J. Appl. Mech. 24, 585–593 (1957)

    MathSciNet  Google Scholar 

  53. Yang, J., Gu, X.Q.: Shear stiffness of granular material at small strain: Does it depend on grain size? Géotechnique 63(2), 165–179 (2013)

    Article  Google Scholar 

  54. Kumar, J., Madhusudhan, B.N.: Effect of relative density and confining pressure on Poisson ratio from bender-extender element tests. Géotechnique 60(7), 561–567 (2010)

    Article  Google Scholar 

  55. Yu, P., Richart, F.E.: Stress ratio effects on shear moduli of dry sands. J. Geotech. Eng. Div. ASCE 110(3), 331–345 (1984)

    Article  Google Scholar 

  56. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  57. Roesler, S.K.: Anisotropic shear modulus due to stress anisotropy. J. Geotech. Eng. Div. ASCE 105(7), 871–880 (1979)

    Google Scholar 

  58. Knox, D.P., Stokoe, K.H., II., Kopperman, S.E.: Effect of State of Stress on Velocity of Low-Amplitude Shear Wave Propagation Along Principle Stress Directions in Dry Sand. Geotechnical Engineering report GR 82-23, University of Texas at Austin, Texas (1982)

  59. Chen, Y.C., Ishibashi, I., Jenkins, J.T.: Dynamic shear modulus and fabric: part I, depositional and induced anisotropy. Géotechnique 38(1), 25–32 (1988)

    Article  Google Scholar 

  60. Callistro, L., Rampello, S.: Shear strength and small-strain stiffness of a natural clay under general stress conditions. Géotechnique 52(8), 547–560 (2002)

    Article  Google Scholar 

  61. Graham, J., Houlsby, G.T.: Anisotropic elasticity of a natural clay. Géotechnique 33(2), 165–180 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper is supported by National Key Research and Development Program (Grant No. 2016YFC0800204), National Natural Science Foundation of China (Grant No. 51308408) and the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2014492311). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Gu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence the position presented in the manuscript entitled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Hu, J. & Huang, M. Anisotropy of elasticity and fabric of granular soils. Granular Matter 19, 33 (2017). https://doi.org/10.1007/s10035-017-0717-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0717-6

Keywords

Navigation