Skip to main content
Log in

Evolution of particle breakage and volumetric deformation of binary granular soils under impact load

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Binary granular soils, mixtures of carbonate sands and nonplastic fines, are widely used for constructions of foundation, airport and embankment in island and coast. Impact load (e.g., sea wave, aircraft landing, pile driving and dynamic compaction during foundation, et al.) is frequently exerted to the mixtures. It is therefore of extreme importance to investigate the evolutions of particle size distribution, particle breakage and volumetric deformation of the mixtures under impact load due to that the grains of carbonate sands are easily to be crushed, which may significant affect its mechanical behavior. Three mixtures (i.e., 100% carbonate plus 0% fines (by dry weight), 90% carbonate plus 10% fines and 80% carbonate plus 20% fines) were prepared to analyze the effect of fines content on particle breakage and volumetric deformation under impact load. It was observed that a unique fractal grading could be obtained for all the mixtures when the blow number was large enough (\(N>20,000\)). The void ratio of the mixtures converged to be a constant ultimate value as the mixture reached the fractal state. The volumetric strain and relative particle breakage with respect to the blow number could be described by hyperbolic functions, indicating that the volumetric strain and relative particle breakage progressively increased to ultimate values with increasing the blow number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

t :

Test time

N :

Blow number

\(I_D \) :

Relative density

\(f_c \) :

Fines content (%)

\(e_0 \) :

Initial void ratio

h :

Specimen height (mm)

\(h_0 \) :

Initial specimen height (mm)

F :

Percentage finer (%)

d :

Grain diameter (mm)

\(d_{\mathrm{M}} \) :

Maximum grain diameter (mm)

\(\alpha \) :

Fractal dimensions

\(\varepsilon _v \) :

Volumetric strain (%)

\(\varepsilon _u \) and \(N_{\varepsilon 0} \) :

Two fitting parameters

\(e_0 \) :

Initial void ratio

e :

Current void ratio

\(B_{\mathrm{p}} \) and \(B_{\mathrm{t}} \) :

Breakage potential and total breakage, respectively

\(B_{\mathrm{r}} \) :

Relative breakage index (%)

\(B_u \) and \(N_{b0} \) :

Fitting parameter

References

  1. Coop, M.R., Sorensen, K.K., Bodas Freitas, T., et al.: Particle breakage during shearing of a carbonate sand. Geotechnique 54, 157–163 (2004)

    Article  Google Scholar 

  2. Yamamuro, J.A., Bopp, P.A., Lade, P.V.: One-dimensional compression of sands at high pressures. J. Geotech. Geoenviron. Eng. 122, 147–154 (1996)

    Article  Google Scholar 

  3. Miao, G., Airey, D.: Breakage and ultimate states for a carbonate sand. Geotechnique 63, 1221–1229 (2013)

    Article  Google Scholar 

  4. Shipton, B., Coop, M.R.: On the compression behaviour of reconstituted soils. Soils Found. 52, 668–681 (2012)

    Article  Google Scholar 

  5. Tarantino, A., Hyde, A.F.L.: An experimental investigation of work dissipation in crushable materials. Geotechnique 55, 575–584 (2005)

    Article  Google Scholar 

  6. Asadzadeh, M., Soroush, A.: Direct shear testing on a rockfill material. Arab. J. Sci. Eng. 34, 379–396 (2009)

    Google Scholar 

  7. Nimbalkar, S., Indraratna, B.: Improved performance of ballasted rail track using geosynthetics and rubber shockmat. J. Geotech. Geoenviron. Eng. pp 04016031–04016031 (2016)

  8. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Geotechnique 53, 633–641 (2003)

    Article  Google Scholar 

  9. Bagherzadeh Kh, A., Mirghasemi, A.A., Mohammadi, S.: Numerical simulation of particle breakage of angular particles using combined DEM and FEM. Powder Technol. 205, 15–29 (2011)

    Article  Google Scholar 

  10. Indraratna, B., Thakur, P.K., Vinod, J.S.: Experimental and numerical study of railway ballast behavior under cyclic loading. Int. J. Geomech. 10, 136–144 (2010)

    Article  Google Scholar 

  11. Lobo-Guerrero, S., Vallejo, L.E., Vesga, L.F.: Visualization of crushing evolution in granular materials under compression using DEM. Int. J. Geomech. 6, 195–195 (2006)

    Article  Google Scholar 

  12. Maeda, K., Sakai, H., Kondo, A., et al.: Stress-chain based micromechanics of sand with grain shape effect. Granular Matter 12, 499–505 (2010)

    Article  MATH  Google Scholar 

  13. Wang, J., DEM Yan, H.: analysis of energy dissipation in crushable soils. Soils Found. 52, 644–657 (2012)

    Article  Google Scholar 

  14. Zhou, W., Yang, L., Ma, G., et al.: DEM analysis of the size effects on the behavior of crushable granular materials. Granular Matter 18, 1–11 (2016)

    Article  ADS  Google Scholar 

  15. Huang, J.Y., Hu, S.S., Xu, S.L., et al.: Fractal crushing of granular materials under confined compression at different strain rates. Int. J. Impact Eng 106, 259–265 (2017)

    Article  Google Scholar 

  16. Mcdowell, G.R., Bolton, M.D., Robertson, D.: The fractal crushing of granular materials. J. Mech. Phys. Solids 44, 2079–2102 (1996)

    Article  ADS  Google Scholar 

  17. Mcdowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Geotechnique 48, 667–679 (1998)

    Article  Google Scholar 

  18. Mcdowell, G.R., Daniell, C.M.: Fractal compression of soil. Geotechnique 51, 173–176 (2001)

    Article  Google Scholar 

  19. Yan, W.M., Shi, Y.: Evolution of grain grading and characteristics in repeatedly reconstituted assemblages subject to one-dimensional compression. Geotech. Lett. 4, 223–229 (2014)

    Article  Google Scholar 

  20. Xiao, Y., Liu, H., Xiao, P., et al.: Fractal crushing of carbonate sands under impact loading. Geotech. Lett. 6, 199–204 (2016)

    Article  Google Scholar 

  21. Ben-Nun, O., Einav, I.: The role of self-organization during confined comminution of granular materials. Philos. Trans. A Math. Phys. Eng. Sci. 368, 231–47 (2010)

    Article  ADS  Google Scholar 

  22. De Bono, J.P., Mcdowell, G.R.: On the micro mechanics of one-dimensional normal compression. Geotechnique 63, 895–908 (2013)

    Article  Google Scholar 

  23. De Bono, J., Mcdowell, G.: Particle breakage criteria in discrete-element modelling. Geotechnique 66, 1014–1027 (2016)

    Article  Google Scholar 

  24. Mcdowell, G.R., De Bono, J.P., Yue, P., et al.: Micro mechanics of isotropic normal compression. Geotech. Lett. 3, 166–172 (2013)

    Article  Google Scholar 

  25. Einav, I.: Breakage mechanics-Part I: Theory. J. Mech. Phys. Solids 55, 1274–1297 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Muir Wood, D. & Maeda, K.: Changing grading of soil: effect on critical states. Acta Geotech. 3, 3–14 (2008)

  27. Xu, Y., Feng, X., Zhu, H., et al.: Fractal model for rockfill shear strength based on particle fragmentation. Granular Matter 17, 753–761 (2015)

    Article  Google Scholar 

  28. Shahnazari, H., Rezvani, R.: Effective parameters for the particle breakage of calcareous sands: An experimental study. Eng. Geol. 159, 98–105 (2013)

    Article  Google Scholar 

  29. Wang, X.Z., Jiao, Y.Y., Wang, R., et al.: Engineering characteristics of the calcareous sand in Nansha Islands. South China Sea. Eng. Geol. 120, 40–47 (2011)

    Google Scholar 

  30. Salgado, R., Bandini, P., Karim, A.: Shear strength and stiffness of silty sand. J. Geotech. Geoenviron. Eng. 126, 451–462 (2000)

    Article  Google Scholar 

  31. Thevanayagam, S., Shenthan, T.: Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng. 128, 849–859 (2002)

    Article  Google Scholar 

  32. Xiao, Y., Sun, Y., Liu, H., et al.: Model predictions for behaviors of sand-nonplastic-fines mixtures using equivalent-skeleton void-ratio state index. Sci. China Tech. Sci. 60, 878–892 (2017). doi:10.1007/s11431-016-9024-9

  33. Shipton, B., Coop, M.R.: Transitional behaviour in sands with plastic and non-plastic fines. Soils Found. 55, 1–16 (2015)

    Article  Google Scholar 

  34. Xiao, Y., Coop, M.R., Liu, H., et al.: Transitional behaviors in well-graded coarse granular soils. J. Geotech. Geoenviron. Eng. 142, 06016018 (2016)

    Article  Google Scholar 

  35. Ladd, R.S.: Preparing test specimens using undercompaction. Geotech. Test. J. 1, 16–23 (1978)

    Article  Google Scholar 

  36. Polito, C.P., Martin Ii, J.R.: Effects of nonplastic fines on the liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 127, 408–415 (2001)

    Article  Google Scholar 

  37. Yang, S., Lacasse, S., Sandven, R.: Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotech. Test. J. 29, 102–107 (2006)

    Google Scholar 

  38. Polito, C.P., Green, R.A., Lee, J.: Pore pressure generation models for sands and silty soils subjected to cyclic loading. J. Geotech. Geoenviron. Eng. 134, 1490–1500 (2008)

  39. Papadopoulou, A.I., Tika, T.M.: The effect of fi nes plasticity on monotonic undrained shear strength and liquefaction resistance of sands. Soil Dyn. Earthq. Eng. 88, 191–206 (2016)

    Article  Google Scholar 

  40. Chiu, C.F., Fu, X.J.: Interpreting undrained instability of mixed soils by equivalent intergranular state parameter. Geotechnique 58, 751–755 (2008)

    Article  Google Scholar 

  41. Belkhatir, M., Arab, A., Schanz, T., et al.: Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter 13, 599–609 (2011)

    Article  Google Scholar 

  42. Tyler, S.W., Wheatcraft, S.W.: Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992)

    Article  ADS  Google Scholar 

  43. Tyler, S.W., Wheatcraft, S.W.: Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53, 987–996 (1989)

    Article  ADS  Google Scholar 

  44. Russell, A.R.: A compression line for soils with evolving particle and pore size distributions due to particle crushing. Geotech. Lett. 1, 5–9 (2011)

    Article  Google Scholar 

  45. Ueng, T.S., Chen, T.J.: Energy aspects of particle breakage in drained shear of sands. Geotechnique 50, 65–72 (2000)

    Article  Google Scholar 

  46. Xiao, Y., Liu, H., Chen, Y., et al.: Strength and deformation of fockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage. J. Geotech. Geoenviron. Eng. 140, 04014071 (2014)

    Article  Google Scholar 

  47. Zhang, Y.D., Buscarnera, G.: Prediction of breakage-induced couplings in unsaturated granular soils. Geotechnique 65, 135–140 (2015)

    Article  Google Scholar 

  48. Ovalle, C., Dano, C., Hicher, P.-Y., et al.: Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio. Can. Geotech. J. 52, 587–598 (2015)

    Article  Google Scholar 

  49. Zhang, C., Nguyen, G.D., Kodikara, J.: An application of breakage mechanics for predicting energy-size reduction relationships in comminution. Powder Technol. 287, 121–130 (2016)

    Article  Google Scholar 

  50. Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng. 111, 1177–1192 (1985)

  51. Xiao, Y., Liu, H., Desai, C.S., Sun, Y., Liu, H.: Effect of intermediate principal-stress ratio on particle breakage of rockfill material. J. Geotech. Geoenviron. Eng. 142, 06015017 (2016)

  52. Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y., Zheng, Y.: Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech. (2017). doi:10.1007/s11440-017-0580-y

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), the National Science Foundation of China (Grant Nos. 51509024, 51678094), the Fundamental Research Funds for the Central Universities (Grant No. 106112015CDJXY200008) and the Project funded by China Postdoctoral Science Foundation (Grant No. 2016M590864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The Authors are most thankful for editor’s and two reviewers’ valuable comments for improving this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liu, H., Chen, Q. et al. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granular Matter 19, 71 (2017). https://doi.org/10.1007/s10035-017-0756-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0756-z

Keywords

Navigation