Skip to main content
Log in

PFC/FLAC coupled simulation of dynamic compaction in granular soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents the PFC/FLAC coupled method to simultaneously reveal the macro- and micro-mechanisms of granular soils during dynamic compaction. A good agreement was found between the numerical simulation and model test. By analyzing the soil displacement field, motion of tracer particles, and evolution of local porosity, the dynamic densification process of granular soils was reproduced. The results show that soil deformations under dynamic compaction can be divided into two modes: the punching deformation caused by the wedging effect of a conical core based on the bearing capacity mechanism, and the compaction deformation induced by the propagation of dynamic waves based on the densification mechanism. The dynamic compaction process is composed of two phases: compaction because of the transient impact and compaction because of the vibration of soil particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Menard, L., Broise, Y.: Theoretical and practical aspects of dynamic consolidation. Geotechnique 25(1), 3–18 (1975)

    Article  Google Scholar 

  2. Gu, Q., Lee, F.H.: Ground response to dynamic compaction of dry sand. Géotechnique 52(7), 481–493 (2002)

    Article  Google Scholar 

  3. Leonards, G.A., Cutter, W.A., Holtz, R.D.: Dynamic compaction of granular soils. J. Geotech. Eng. Div. ASCE 106(1), 35–44 (1980)

    Google Scholar 

  4. Mayne, P.W., Jones, J.S.: Impact stresses during dynamic compaction. J. Geotech. Eng. 109(10), 1342–1346 (1983)

    Article  Google Scholar 

  5. Ramaswamy, S.D., Aziz, M.A., Subrahamanyam, R.V., Abdulkhader, M.H., Lee, S.L.: Treatment of peaty clay by high-energy impact. J. Geotech. Eng. 105(8), 957–967 (1979)

    Google Scholar 

  6. Mayne, P.W., Jones, J.S., Dumas, J.C.: Ground response to dynamic compaction. J. Geotech. Eng. 110(6), 757–774 (1984)

    Article  Google Scholar 

  7. Slocombe, B.C., Moseley, M.P.: TN7. Experience with Dynamic Compaction on Derelict Sites, pp. 799–806. Thomas Telford, London (1987)

    Google Scholar 

  8. Thilakasiri, H.S., Gunaratne, M., Mullins, G., et al.: Investigation of impact stress induced in laboratory dynamic compaction of soft soils. Int. J. Numer. Anal. Methods Geomech. 20(10), 753–767 (1996)

    Article  Google Scholar 

  9. Zou, J.F., Sheng, Y.M., Xia, Z.Q.: Dynamic stress properties of dynamic compaction (DC) in a red-sandstone soil–rock mixture embankment. Environ. Earth Sci. 76(12), 411 (2017)

    Article  Google Scholar 

  10. Hu, R.L., Yue, Z.Q., Tham, L.G., et al.: Digital image analysis of dynamic compaction effects on clay fills. J. Geotech. Geoenviron. Eng. 131(11), 1411–1422 (2005)

    Article  Google Scholar 

  11. Chow, S.H., Nazhat, Y., Airey, D.W.: Applications of high speed photography in dynamic tests. In: Proceeding of 7th International Conference on Physical Modelling in Geotechnics, ICPMG, Zurich, pp. 313–318 (2010)

    Chapter  Google Scholar 

  12. Nazhat, Y., Airey, D.: Applications of high speed photography and X-ray computerised tomography (Micro CT) in dynamic compaction tests. In: International Symposium on Deformation Characteristics of Geomaterials. Seoul, Korea, 1–3 September, pp. 421–427 (2011)

  13. Nazhat, Y., Airey, D.: The kinematics of granular soils subjected to rapid impact loading. Granular Matter 17(1), 1–20 (2015)

    Article  Google Scholar 

  14. Smith, I.M.: Programming the finite element method with application to geomechanics. Wiley, New York (1982)

    MATH  Google Scholar 

  15. Chow, Y.K., Yong, D.M., Yong, K.Y., et al.: Monitoring of dynamic compaction by deceleration measurements. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 10(3), 189–209 (1990)

    Google Scholar 

  16. Chow, Y.K., Yong, D.M., Yong, K.Y., et al.: Dynamic compaction analysis. J. Geotech. Eng. 118(8), 1141–1157 (1992)

    Article  Google Scholar 

  17. Chow, Y.K., Yong, D.M., Yong, K.Y., et al.: Dynamic compaction of loose sand deposits. Soils Found. 32(4), 93–106 (1993)

    Article  Google Scholar 

  18. Pan, J.L., Selby, A.R.: Simulation of dynamic compaction of loose granular soils. Adv. Eng. Softw. 33(7), 631–640 (2002)

    Article  Google Scholar 

  19. Yulek, M.: Dynamic compaction of a thin subgrade layer overlying weak deposit. Masters thesis, Concordia University (2006)

  20. Ghassemi, A., Pak, A., Shahir, H.: Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils. Comput. Geotech. 37(1–2), 10–24 (2010)

    Article  Google Scholar 

  21. Bradley, A., Jaksa, M.B., Kuo, Y.L., et al.: A finite element model for heavy tamping on dry sand. Eur. Conf. Soil Mech. Geotech. Eng. 3, 1377–1382 (2015)

    Google Scholar 

  22. Pourjenabi, M., Ghanbari, E., Hamidi, A.: Numerical model of dynamic compaction in dry sand using different constitutive models. In: 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, 12–14 June (2013)

  23. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 30(3), 331–336 (1980)

    Article  Google Scholar 

  24. Cundall, P.A.: Numerical experiments on localization in frictional materials. Ingenieur-Archiv 59(2), 148–159 (1989)

    Article  Google Scholar 

  25. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  26. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Géotechnique 53(7), 633–642 (2003)

    Article  Google Scholar 

  27. Wada, K., Senshu, H., Matsui, T.: Numerical simulation of impact cratering on granular material. Icarus 180(2), 528–545 (2006)

    Article  ADS  Google Scholar 

  28. Ma, Z.Y., Dang, F.N., Liao, H.J.: Numerical study of the dynamic compaction of gravel soil ground using the discrete element method. Granular Matter 16(6), 881–889 (2014)

    Article  Google Scholar 

  29. Jiang, M.J., Wu, D., Xi, B.: DEM simulation of dynamic compaction with different tamping energy and calibrated damping parameters. In: Proceedings of the 7th International Conference on Discrete Element Methods, Dalian, China, 1–4 August, pp. 845–851 (2016)

    Google Scholar 

  30. Jiang, M.J., Yu, H.S., Harris, D.: Discrete element modelling of deep penetration in granular soils. Int. J. Numer. Anal. Methods Geomech. 30(4), 335–361 (2006)

    Article  Google Scholar 

  31. Nakashima, H., Oida, A.: Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method. J. Terrramech. 41(2), 127–137 (2004)

    Article  Google Scholar 

  32. Cai, M., Kaiser, P.K., Morioka, H., et al.: FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations. Int. J. Rock Mech. Min. Sci. 44(4), 550–564 (2007)

    Article  Google Scholar 

  33. Saiang, D.: Stability analysis of the blast-induced damage zone by continuum and coupled continuum–discontinuum methods. Eng. Geol. 116(1–2), 1–11 (2010)

    Article  Google Scholar 

  34. Jin, W.F., Zhou, J.: Two-scale coupled simulation of tunnel-soil vibrations under train excitation. Chin. J. Rock Mechan. Eng. 30(5), 1016–1024 (2011)

    Google Scholar 

  35. Itasca Consulting Group: Particle Flow Code in 2 Dimensions version 4.0, User’s manual, ITASCA Consulting Group, Minneapolis, Minnesota, USA

  36. Itasca Consulting Group: Fast Lagrangrian Analysis of Continua (FLAC) user’s guide, Version 5.00, user’s manual. ITASCA Consulting Group Minneapolis, Minnesota, USA

  37. Qian, J., You, Z., Huang, M., Gu, X.: A micromechanics-based model for estimating localized failure with effects of fabric anisotropy. Comput. Geotech. 50(3), 90–100 (2013)

    Article  Google Scholar 

  38. Feng, Z.Y., Lo, C.M., Lin, Q.F.: The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides 14(2), 1–14 (2016)

    Google Scholar 

  39. Jia, M.C., Wang, L., Zhou, J.: Meso-mechanical analysis of characteristics of dry sands in response to dynamic compaction with PFC2D. Rock & Soil Mech. 30(4), 871–878 (2009)

    Google Scholar 

  40. Jiang, M.J., Shen, Z.F., Zhu, F.Y.: Numerical analyses of braced excavation in granular grounds: continuum and discrete element approaches. Granular Matter 15(2), 195–208 (2013)

    Article  Google Scholar 

  41. Mullins, G., Gunaratne, M., Stinnette, P., Thilakasiri, S.: Prediction of dynamic compaction pounder penetration. Soils Found. 40(5), 91–97 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the NSFC for the financial support of the first author (Grant number 40972214). Furthermore, the authors would like to thank the reviewers and Prof. Mingjing Jiang for their constructive comments and suggestions that contribute to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mincai Jia.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Yang, Y., Liu, B. et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granular Matter 20, 76 (2018). https://doi.org/10.1007/s10035-018-0841-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0841-y

Keywords

Navigation