Skip to main content
Log in

Induced force chain anisotropy of cohesionless granular materials during biaxial compression

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper investigates the induced anisotropy and multi-scale shear characteristics of granular materials by quantifying force chain distribution in two-dimensional specimens of rigid particles under quasi-static loading. A new criterion is proposed and implemented into the existing algorithm which can effectively solve the identification instability of force chains at branching and merging points. Force chain is then classified into three categories according to the variation of force chain quantity and average stress with segment length: stable segments, meta-stable segments and unstable force chain segments. The stable force chain segments dominate the load-bearing behavior of the granular materials. The directional distribution of force chain segments is more anisotropic and more sensitive to the applied stress than contact normal vectors, which show obvious local peaks in both vertical and horizontal directions at high deviatoric stress. Therefore, the probability density of directional distribution of force chains needs to be described by the first two deviatoric components of Fourier expansion with deviators A1 and A2, which are indicators reflecting the intensity of the induced-anisotropy of the granular materials. As the absolute values of A1 and A2 increase, the induced anisotropy is more significant. The final shear failure types are determined by the quantities of force chains orienting in two potential shear failure directions: if there is an obvious difference between the quantities of the two directions, single shear band occurs within the direction with less force chains; otherwise, conjugated double shear bands occur and lie in the two potential shear failure directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aharonov, E., Sparks, D.: Shear profiles and localization in simulations of granular materials. Phys. Rev. E 65, 051302 (2002)

    Article  ADS  Google Scholar 

  2. Wan, R., Guo, P., Al-Mamun, M.: Behaviour of granular materials in relation to their fabric dependencies. Soils Found. 45, 77–86 (2005)

    Article  Google Scholar 

  3. Behringer, R., Daniels, K.E., Majmudar, T.S., Sperl, M.: Fluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366, 493–504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Tordesillas, A., Zhang, J., Behringer, R.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4, 3–16 (2009)

    Article  Google Scholar 

  5. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39, 601–614 (1989)

    Article  Google Scholar 

  6. Guo, P., Stolle, D.F.E.: On the failure of granular materials with fabric effects. Soils Found. 45, 1–12 (2005)

    Article  Google Scholar 

  7. Zhu, H., Nicot, F., Darve, F.: Meso-structure evolution in a 2D granular material during biaxial loading. Granul. Matter 18, 3 (2016)

    Article  Google Scholar 

  8. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48, 465–481 (1998)

    Article  Google Scholar 

  9. Tordesillas, A., Muthuswamy, M.: A thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotech. 3, 225–240 (2008)

    Article  Google Scholar 

  10. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)

    Article  Google Scholar 

  11. Guo, P.: Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7, 41–55 (2012)

    Article  Google Scholar 

  12. Dantu, P.: Contribution à l’ètude mècanique et gèomètrique des milieux pulvèrulents. In: Presented at the 4th International Conference on Soil Mechanics and Foundation Engineering, London (1957)

  13. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513–515 (1995)

    Article  ADS  Google Scholar 

  14. Ouaguenouni, S., Roux, J.-N.: Force distribution in frictionless granular packings at rigidity threshold. Europhys. Lett. 39, 117–122 (1997)

    Article  ADS  Google Scholar 

  15. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  16. Goldenberg, C., Goldhirsch, I.: Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89, 084302 (2002)

    Article  ADS  Google Scholar 

  17. Bigoni, D., Noselli, G.: Localized stress percolation through dry masonry walls. Part I—Experiments. Eur. J. Mech. A/Solids 29, 291–298 (2010)

    Article  ADS  Google Scholar 

  18. Bigoni, D., Noselli, G.: Localized stress percolation through dry masonry walls. Part II—Modelling. Eur. J. Mech. A/Solids 29, 299–307 (2010)

    Article  ADS  Google Scholar 

  19. Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

    Article  ADS  Google Scholar 

  20. Chaiamarit, C., Balandraud, X., Preechawuttipong, I., Grédiac, M.: Stress network analysis of 2D non-cohesive polydisperse granular materials using infrared thermography. Exp. Mech. 55, 761–769 (2015)

    Article  Google Scholar 

  21. Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25, 85–97 (1985)

    Article  Google Scholar 

  22. Vairaktaris, E., Theocharis, A.I., Dafalias, Y.F.: Correlation of fabric tensors for granular materials using 2D DEM. Acta Geotech. (2018). https://doi.org/10.1007/s11440-019-00811-z

    Article  Google Scholar 

  23. Theocharis, A.I., Vairaktaris, E., Dafalias, Y.F.: Scan line void fabric anisotropy tensors of granular media. Granul. Matter 19, 68 (2017)

    Article  Google Scholar 

  24. Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)

    Article  ADS  Google Scholar 

  25. Drescher, A., De Jong, G.D.J.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337–351 (1972)

    Article  ADS  Google Scholar 

  26. Ken-Ichi, K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984)

    Article  MathSciNet  Google Scholar 

  27. Raihan Taha, M., Shaverdi, H.: Evolution of fabric under the rotation of the principal stress axes in the simple shear test. Mech. Mater. 69, 173–184 (2014)

    Article  Google Scholar 

  28. Blair, D.L., Mueggenburg, N.W., Marshall, A.H., Jaeger, H.M., Nagel, S.R.: Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction. Phys. Rev. E 63, 041304 (2001)

    Article  ADS  Google Scholar 

  29. Kruyt, N., Rothenburg, L.: Probability density functions of contact forces for cohesionless frictional granular materials. Int. J. Solids Struct. 39, 571–583 (2002)

    Article  Google Scholar 

  30. Oda, M.: Fabric tensor for discontinous geological materials. Soils Found. 22, 96–108 (1982)

    Article  Google Scholar 

  31. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)

    Article  ADS  Google Scholar 

  32. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85, 031303 (2012)

    Article  ADS  Google Scholar 

  33. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)

    Article  ADS  Google Scholar 

  34. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  35. Campbell, C.S.: A problem related to the stability of force chains. Granul. Matter 5, 129–134 (2003)

    Article  Google Scholar 

  36. Hunt, G.W., Tordesillas, A., Green, S.C., Shi, J.: Force-chain buckling in granular media: a structural mechanics perspective. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 249–262 (2010)

    Article  ADS  Google Scholar 

  37. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265–296 (2011)

    Article  ADS  Google Scholar 

  38. Zhang, L., Nguyen, N.G.H., Lambert, S., Nicot, F., Prunier, F., Djeran-Maigre, I.: The role of force chains in granular materials: from statics to dynamics. Eur. J. Environ. Civil Eng. 21, 874–895 (2017)

    Article  Google Scholar 

  39. Blumenfeld, R.: Stresses in isostatic granular systems and emergence of force chains. Phys. Rev. Lett. 93, 108301 (2004)

    Article  ADS  Google Scholar 

  40. Muthuswamy, M., Tordesillas, A.: How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? J. Stat. Mech Theory Exp. 2006, P09003 (2006)

    Article  Google Scholar 

  41. Cates, M.E., Wittmer, J.P., Bouchaud, J.-P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841–1844 (1998)

    Article  ADS  Google Scholar 

  42. Van Siclen, C.D.: Force structure of frictionless granular piles. Physica A 333, 155–167 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. Han, J., Bhandari, A., Wang, F.: DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int. J. Geomech. 12, 340–350 (2012)

    Article  Google Scholar 

  44. Sazzad, M.M., Suzuki, K.: Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D DEM. Granul. Matter 12, 597–605 (2010)

    Article  Google Scholar 

  45. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9, 69–80 (2006)

    Article  Google Scholar 

  46. Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018)

    Article  Google Scholar 

  47. Rui, R., van Tol, F., Xia, X.-L., van Eekelen, S., Hu, G., Xia, Y.: Evolution of soil arching; 2D DEM simulations. Comput. Geotech. 73, 199–209 (2016)

    Article  Google Scholar 

  48. Gu, X., Huang, M., Qian, J.: Discrete element modeling of shear band in granular materials. Theor. Appl. Fract. Mech. 72, 37–49 (2014)

    Article  Google Scholar 

  49. Sadrekarimi, A., Olson, S.M.: Shear band formation observed in ring shear tests on sandy soils. J. Geotech. Geoenviron. Eng. 136, 366–375 (2010)

    Article  Google Scholar 

  50. Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech. 28, 279–321 (2004)

    Article  Google Scholar 

  51. Lumb, P.: Safety factors and the probability distribution of soil strength. Can. Geotech. J. 7, 225–242 (1970)

    Article  Google Scholar 

  52. Shi, J., Guo, P.: Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths. Soils Found. 58, 249–263 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The NSFC (National Natural Science Foundation of China) Program, Grant Nos. 51708423 and 51761135109 are greatly appreciated for providing financial support for this research. The authors also thank Mr. Zhekan Tian for his assistance in preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunhua Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhou, S., Guo, P. et al. Induced force chain anisotropy of cohesionless granular materials during biaxial compression. Granular Matter 21, 52 (2019). https://doi.org/10.1007/s10035-019-0899-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0899-1

Keywords

Navigation