Skip to main content
Log in

Determining groundwater degradation from irrigation in desert-marginal northern China

Etat de la dégradation de l’eau souterraine due à l’irrigation en marge désertique du Nord de la Chine

Determinación de la degradación del agua subterránea a partir de la irrigación en el desierto marginal del norte de China

中国北方沙漠边缘因灌溉导致的地下水质恶化

Determinação da degradação da água subterrânea a partir da rega na área marginal do deserto no norte da China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater degradation from irrigated agriculture is of concern in semi-arid northern China. Data-scarcity often means the causes and extent of problems are not fully understood. An irrigated area in Inner Mongolia was studied, where abstraction from an unconfined Quaternary aquifer has increased threefold over 20 years to 20 million m3/year; groundwater levels are falling at up to 0.5 m/year; and groundwater is increasingly mineralised (TDS increase from 400 to 700–1,900 mg/L), with nitrate concentrations up to 137 mg/L N. Residence-time (chlorofluorocarbons), stable-isotope and hydrogeochemical indicators helped develop a conceptual model of groundwater system evolution, demonstrating a direct relationship between modern water proportion and the degree of groundwater mineralisation, indicating that irrigation-water recycling is reducing groundwater quality. The investigations suggest that before irrigation development, active recharge to the aquifer from wadis significantly exceeded groundwater inflow from nearby mountains, previously held to be the main groundwater input. Away from active wadis, groundwater is older with a probable pre-Holocene component. Proof-of-concept groundwater modelling supports geochemical evidence, indicating the importance of wadi recharge and irrigation return flows. Engineering works protecting the irrigated area from flooding have reduced good quality recharge; active recharge is now dominated by irrigation returns, which are degrading the aquifer.

Résumé

La dégradation de l’eau souterraine due à l’irrigation est une cause d’inquiétude dans le Nord semi-aride de la Chine. Par suite de la rareté des données, l’origine et l’étendue des problèmes ne sont pas complètement connues. On a étudié une aire irriguée en Mongolie Intérieure dans laquelle le prélèvement sur un aquifère libre quaternaire a triplé en 20 ans jusqu’à atteindre 20 millions de m3/an, le niveau des eaux souterraines diminuant jusqu’à 0.5 m/an et la minéralisation augmentant (les MDT augmentent de 400 à 700–1,900 mg/L), avec des concentrations en nitrates jusqu’à 137 mg-N/L. Le temps de résidence (chlorofluorocarbones), les isotopes stables et les indicateurs hydrogéochimiques ont servi à développer un modèle conceptuel d’évolution de l’aquifère, montrant une relation directe entre la proportion d’eau actuelle et son degré de minéralisation et indiquant que le recyclage de l’eau d’irrigation réduit la qualité de l’eau souterraine. Les investigations suggèrent que, en raison du développement de l’irrigation, la recharge active de l’aquifère par les ouadis dépasse de façon significative l’apport des montagnes proches, auparavant considéré comme apport principal. A distance des ouadis actifs, l’eau souterraine est plus ancienne, avec une composante probable pré-Holocène. La validation du principe de modélisation de l’eau souterraine étaie la signature géochimique, indiquant l’importance de la recharge par les ouadis et du flux de retour de l’irrigation. Les travaux de génie civil protégeant la zone irriguée contre l’inondation ont réduit la recharge de bonne qualité; la recharge active est maintenant dominée par les retours d’irrigation, qui dégradent l’aquifère.

Resumen

La degradación de agua subterránea a partir de la irrigación en la agricultura es preocupante en el norte semiárido de China. La escasez de datos a menudo significa que las causas y la extensión de problemas no están totalmente entendidas. Se estudió un área irrigada en Mongolia interior, donde la extracción a partir de un acuífero Cuaternario no confinado se ha incrementado tres veces durante 20 años a 20 millones de m3/año; los niveles de agua subterránea caen hasta 0.5 m/año; y el agua subterránea se está progresivamente mineralizando (TDS se incrementa de 400 a 700–1,900 mg/L), con concentraciones de nitrato de hasta 137 mg/L N. El tiempo de residencia (clorofluorocarbonos), isótopos estables e indicadores hidrogeoquímicos ayudaron a desarrollar un modelo conceptual de la evolución del sistema de agua subterránea, demostrando una relación directa entre la proporción de agua moderna y el grado de mineralización del agua subterránea, lo cual indica que la irrigación y reciclado del agua está reduciendo la calidad del agua subterránea. Las investigaciones sugieren que antes del desarrollo de la irrigación, la recarga activa del acuífero a partir de wadis excedía significativamente al ingreso de agua subterránea proveniente de las montañas cercanas, lo que previamente se suponía ser el principal ingreso de agua subterránea. Lejos de los wadis activos, el agua subterránea es más vieja con una componente probable pre-holocénica. La prueba del modelo conceptual de agua subterránea se apoya en evidencias geoquímicas, indicando la importancia de la recarga del wadi y los flujos de retorno de la irrigación. Los trabajos de ingeniería para proteger el área irrigada de inundaciones han reducido la recarga de buena calidad; la recarga activa es ahora dominada por retornos de la irrigación, lo cual está degradando el acuífero.

摘要

中国北方半干旱区的农业灌溉造成了地下水质恶化, 但由于数据缺少, 无法完全了解其机理和程度。本文选择内蒙古某灌区开展研究。20年来, 该区第四系潜水含水层地下水的开采量已增加3倍, 达2千万m3/year, 地下水位 年下降达0.5 m/year;地下水矿化程度增加(TDS从400 增至 700–1,900 mg/L); 硝酸盐浓度达137 mg/L N。基于滞留时间(CFCs年龄); 稳定同位素和水文地球化学资料, 建立了一个地下水系统演化概念模型。模型表明, 现代水所占比例与地下水矿化程度有直接关系, 说明灌溉水的回归导致了地下水质的恶化。调查表明,在灌溉发展之前,含水层接受来自河道的补给大于附近山区的侧向补给,为地下水的主要补给源。除了河道的补给, 地下水还可能有前全新世的年龄较老的补给。概念验证模拟的结果支持地球化学证据, 说明河道补给和灌溉回归水的重要性。保护灌区免受洪灾的工程减少了水质较好的水源补给; 现在含水层主要接受灌溉回归水的补给, 导致地下水质

Resumo

Na região semi-árida do norte da China, a degradação da água subterrânea, devido à agricultura de regadio, é preocupante. As causas e a extensão dos problemas não estão totalmente compreendidas, uma vez que os dados são escassos. Foi estudada uma área regada, no interior da Mongólia, onde num aquífero livre quaternário, as extracções aumentaram durante 20 anos para 20 milhões m3/ano; os níveis freáticos estão a rebaixar até 0.5 m/ano, e as águas subterrâneas estão cada vez mais mineralizadas (o TSD aumentou de 400 para 700–1,900 mg/L), com as concentrações de nitratos acima dos 137 mg/L N. O tempo de residência (clorofluorcarbonos) e indicadores de isótopos estáveis e hidrogeoquímicos permitiram o desenvolvimento de um modelo conceptual da evolução do sistema das águas subterrâneas, demonstrando uma relação directa entre a proporção de água moderna e o grau de mineralização da água subterrânea, indicando que a reciclagem da água de rega está a reduzir a qualidade das águas subterrâneas. As investigações sugerem que, antes do desenvolvimento da rega, a recarga activa dos wadis para o aquífero excedia, significativamente, a entrada de água das montanhas próximas, previamente declaradas como a principal área de recarga. Em áreas afastadas dos wadis activos, as águas subterrâneas são mais antigas, com uma componente provável pré-Holocénica. A demonstração da modelação da água subterrânea suporta as evidências geoquímicas, mostrando a importância da recarga dos wadis e dos fluxos de retorno de rega. As obras de engenharia que protegem as áreas de regadio das cheias contribuíram para a redução da boa qualidade da recarga; a recarga activa é agora dominada pela água de retorno de rega, degradando a qualidade do aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper no. 56, FAO, Rome, Italy

  • Busenberg E, Plummer L (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as Hhydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2283

    Article  Google Scholar 

  • Chen Z, Qi J, Xu J, Xu J, Ye H, Nan Y (2003) Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain. Appl Geochem 18:997–1009

    Article  Google Scholar 

  • Chen J, Tang C, Sakura Y, Yu J, Fukushima Y (2005) Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeol J 13:481–492

    Article  Google Scholar 

  • Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93

    Article  Google Scholar 

  • Gates JB, Böhlke JK, Edmunds WM (2008) Ecohydrological factors affecting nitrate concentrations in a phreatic desert aquifer in northwestern China. Environ Sci Technol 42:3531–3537

    Article  Google Scholar 

  • Groundwater Development and Utilisation Teaching and Research Office (1984) Hydrogeology survey report on the Chahaertan Irrigation Area, Left Banner: water resource assessment and systematic analysis. Agricultural and Animal Husbandry, Water Conservancy and Engineering School, Inner Mongolia Agricultural and Animal Husbandry College, December 1984

  • Guo H, Wang Y (2004) Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin, China. Appl Geochem 19:19–27

    Article  Google Scholar 

  • Hughes AG, Mansour MM, Robins NS, Peach DW (2006) Numerical modeling of runoff recharge in a catchment in the West Bank. In: MODFLOW and more: managing ground-water systems—conference proceedings, vol 1. Golden, CO, May 2006, pp 385–389

  • Hughes AG, Mansour MM, Robins NS (2008) Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer. Hydrogeol J 16:845–854

    Article  Google Scholar 

  • IAEA (2009) Yinchuan Station record in the water isotope system for data analysis, visualization and electronic retrieval (WISER) of the International Atomic Energy Agency. IAEA, Vienna. http://nds121.iaea.org/wiser/index.php. Cited August 2009

  • Jackson CR, Hughes AG, Ó Dochartaigh BÉ, Robins NS, Peach DW (2005) Numerical testing of conceptual models of groundwater flow: a case study using the Dumfries Basin Aquifer. Scott J Geol 41(1):51–60

    Article  Google Scholar 

  • Jerie P (2006) Improving the management of water and nitrogen fertilizer for agricultural profitability and groundwater quality in Alxa. Preliminary Report, ALERMP, Bayenhot, China

  • Ji XB, Kang ES, Chen RS, Zhao WZ, Zhang ZH, Jin BW (2006) The impact of the development of water resources on environment in arid inland river basins of Hexi region, northwestern China. Environ Geol 50(6):793–801

    Article  Google Scholar 

  • Kendy E, Gerard-Marchant P, Walter MT, Zhang Y, Liu C, Steenhuis TS (2003) A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrol Process 17:2011–2031

    Article  Google Scholar 

  • Kreuzer AM, Von Rohden C, Friedrich R, Chen Z, Shi J, Hajdas I, Kipfer R, Aeschbach-Hertig W (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259:168–180

    Article  Google Scholar 

  • Lange J, Greenbaum N, Husary S, Ghanem M, Leibundgut C, Schick AP (2003) Runoff generation from successive simulated rainfalls on a rocky, semi-arid, Mediterranean hillslope. Hydrol Process 17:279–296

    Article  Google Scholar 

  • Left Banner Water Management and Water Resource Office (1992) Water Supply Project (Supply Amount) Yield Statistics Summary Table. Left Banner, Alxa, China, December 1992

  • Ma JZ, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeol J 14:1231–1243

    Article  Google Scholar 

  • Ma JZ, Wang XZ, Edmunds WM (2005) The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China: a case study of the Shiyang River Basin. J Arid Environ 61(2):277–295

    Article  Google Scholar 

  • Ó Dochartaigh BÉ, MacDonald AM (2006) Groundwater degradation in the Chahaertan Oasis, Alxa League, Inner Mongolia. British Geological Survey Commissioned Report CR/06/220 N, BGS, Keyworth, UK

  • People’s Liberation Army (1976) Regional Hydrogeological Survey Report for Sheet J-48-[4]: Jilantai, China

  • People’s Liberation Army (1980) Regional Hydrogeological Survey Report for Sheet J-48-[10]: Left Banner, Alxa, China

  • Rushton KR, Wedderburn LA (1971) Starting conditions for aquifer simulations. Ground Water 11(1):37–42

    Article  Google Scholar 

  • Spink AEF, Jackson CR, Hughes AG, Hulme PJ (2003) The benefits of object-oriented modeling demonstrated through the development of a regional groundwater model. MODFLOW and More 2003: Understanding through Modeling—conference proceedings, Golden, CO, May 2006. pp 336–340

  • Spink, AEF, Hughes AG, Jackson CR, Mansour MM (2006) Object-oriented design in groundwater modelling. MODFLOW and More 2006: Managing Ground-Water Systems—Conference Proceedings. Golden, CO, May 2006

  • USGS (2009) Northern hemisphere air curve record from the Reston Chlorofluorocarbon Laboratory of the United States Geological Survey. http://water.usgs.gov/lab/software/air_curve/. Cited August 2009

  • Yuan LJ, Wu SZ (1996) Groundwater hydrological systems in arid areas: western Helanshan groundwater systems research. Geological Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Agency for International Development (AusAID), A $10 million, 2001-2006, Alxa League Environmental Rehabilitation and Management Project (ALERMP). This report is published with the permission of the Director, ALERMP and the Executive Director of the British Geological Survey (NERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brighid E. Ó Dochartaigh.

Supplementary materials

Below is the link to the electronic supplementary material.

Table ESM1

Location of production wells used for water-quality sampling, and field measurements for groundwaters from Chahaertan. See Fig. 3, main text, for sample locations. (PDF 25 kb)

Table ESM2

Analyses of major and minor inorganic species in groundwaters from the Chahaertan area, with calculated saturation indices (SIs) with respect to calcite and gypsum, and pH for comparison. See Fig. 3, main text, for sample locations. (PDF 19 kb)

Table ESM3

Analyses of CFCs and stable isotopes in groundwaters from the Chahaertan area. See Fig. 3, main text, for sample locations. (PDF 14 kb)

Table ESM4

Recharge model details (PDF 21 kb)

Table ESM5

Groundwater flow model parameters (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ó Dochartaigh, B.E., MacDonald, A.M., Darling, W.G. et al. Determining groundwater degradation from irrigation in desert-marginal northern China. Hydrogeol J 18, 1939–1952 (2010). https://doi.org/10.1007/s10040-010-0644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0644-7

Keywords

Navigation