Skip to main content
Log in

Proposal for Fourier-Transform Phase-Modulation Fluorometer

  • QUANTUM OPTICS AND SPECTROSCOPY
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

I propose a concept of a novel Fourier-transform phase-modulation fluorometer by which a fluorescence decay waveform can be obtained. In the fluorometer, the modulation frequency of the excitation light source is swept continuously from a start frequency fmin to an end frequency fmax with a time duration T. The resultant fluorescence signal waveform is Fourier-transformed to obtain amplitude and phase spectra. The ratio of the amplitude spectrum and the difference of the phase spectrum over those of the reference spectra that are obtained from a non-fluorescent material are calculated, respectively, and the pair of both spectral data is inverse-Fourier-transformed again to obtain the fluorescence decay waveform. To verify and demonstrate the effectiveness of the concept, I carried out (1) numerical simulations, (2) determination of a time constant of a passive resistor-capacitor (RC) differential circuit, and (3) measurement of a fluorescent decay waveform of YAG materials packed in Nichia’s white LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Ide, Y. Engelborghs and A. Persoons: Rev. Sci. Instrum. 54 (1983) 841.

    Article  Google Scholar 

  2. A. E. W. Knight and B. K. Selinger: Aust. J. Chem. 26 (1973) 1.

    Google Scholar 

  3. T. Iwata, T. Uchida and S. Minami: Appl. Spectrosc. 39 (1985) 101.

    Article  Google Scholar 

  4. T. Iwata, A. Hori and T. Kamada: Opt. Rev. 8 (2001) 326.

    Google Scholar 

  5. M. Hauser and G. Heidt: Rev. Sci. Instrum. 46 (1975) 470.

    Article  Google Scholar 

  6. H.-P. Haar and M. Hauser: Rev. Sci. Instrum. 49 (1978) 632.

    Article  Google Scholar 

  7. A. J. W. G. Visser, H. J. Grande and C. Veeger: Biophys. Chem. 12 (1980) 35.

    Article  PubMed  Google Scholar 

  8. J. R. Lakowicz and A. Baiter: Biophys. Chem. 16 (1982) 99.

    Article  PubMed  Google Scholar 

  9. E. Gratton and M. Limkeman: Biophys. J. 44 (1983) 315.

    PubMed  Google Scholar 

  10. J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton and M. Limkeman: Biophys. J. 46 463 (1984).

    PubMed  Google Scholar 

  11. E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek and G. Laczko: Biophys. J. 46 (1984) 479.

    PubMed  Google Scholar 

  12. F. V. Bright, C. A. Monig and G. M. Hieftje: Anal. Chem. 58 (1986) 3139.

    Article  Google Scholar 

  13. F. V. Bright, C. A. Monig and G. M. Hieftje: Appl. Opt. 58 (1986) 3256.

    Google Scholar 

  14. F. V. Bright, C. A. Monig and G. M. Hieftje: Appl. Spectrosc. 42 (1988) 272.

    Article  Google Scholar 

  15. M. J. Wirth and S. Chou: Appl. Spectrosc. 42 (1988) 483.

    Article  Google Scholar 

  16. T. Iwata, T. Kamada and T. Araki: Opt. Rev. 7 (2000) 495.

    Google Scholar 

  17. H. Szmacinski and Q. Chang: Appl. Spectrosc. 54 (2000) 106.

    Article  Google Scholar 

  18. J. R. Alcala, C. Yu and G. J. Yeh: Rev. Sci. Instrum. 64 (1993) 1554.

    Article  Google Scholar 

  19. J. Sipior, G. M. Carter, J. R. Lakowicz and G. Rao: Rev. Sci. Instrum. 68 (1997) 2666.

    Article  Google Scholar 

  20. S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan and D. F. Wilson: Rev. Sci. Instrum. 72 (2001) 3396.

    Article  Google Scholar 

  21. A. Papoulis: Signal Analysis (McGraw-Hill, New York, 1977).

    Google Scholar 

  22. R. N. Bracewell: The Fourier Transform and Its Applications (McGraw-Hill, New York, 1986).

    Google Scholar 

  23. T. Miyata, Y. Imamoto, T. Iwata and T. Araki: ICO XIX Optics for Quality of Life (19th Congr. Int. Commission for Optics, Firenze, Italy, Aug. 2002) p. 695.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Iwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, T. Proposal for Fourier-Transform Phase-Modulation Fluorometer. OPT REV 10, 31–37 (2003). https://doi.org/10.1007/s10043-003-0031-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-003-0031-x

Key words

Navigation