Skip to main content
Log in

Ablation of Transparent Materials Using Excimer Lasers for Photonic Applications

  • LASERS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

For many years, the development of effective ablation or laser machining techniques for making micro-optical components has been the key factor in the birth of new photonic devices and systems. In this article, the ablation characteristics of two types of the most important transparent materials, transparent polymers and glasses, are studied. Simple shaped microcavities are first machined for studying the fundamental ablation parameters, including threshold fluence, effective absorption coefficient, and ablation rate. In studying polymer ablation, five standard grades and five proprietary polymeric compounds are selected. Ablation techniques using these transparent polymers for making arrayed ferrules and curved microlenses are presented. Applications of these ablated microstructures for optical fiber connectors, optical fiber coupling and alignment, and transparent chip encapsulants, are introduced and demonstrated with emphasis on the quality of the ablated profiles and dimensions to satisfy the required performance. In glass ablation, borosilicate glasses are considered and their associated ablation behaviors are studied. The procedures to ablate glass-based arrayed microstructures with flat and curved surfaces are described. The utilizations of these arrayed microstructures for optical waveguide, wave absorber, and beam guider, are specifically discussed. Finally, concluding remakes for future trends are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1) Y.-C. Lee and S. H. Kuo: Sens. Actuators A 93 (2001) 57.

    Google Scholar 

  2. 2) Y. T. Chen, K. J. Ma, J. G. Zhou and A. A. Tseng: J. Laser Appl. 17 (2005) 38.

    ADS  Google Scholar 

  3. 3) M. C. Gower: Laser Precision Microfabrication (LPM2000), RIKEN Rev. No. 32 (2001) 50.

  4. 4) P. E. Dyer: Appl. Phys. A 77 (2003) 167.

    Article  ADS  MathSciNet  Google Scholar 

  5. 5) R. Pātzel: An introduction to Excimer Lasers (Laurin Publishing, Pittsfield, MA, 2002) Photonics Handbook, 44th ed., p. 247.

    Google Scholar 

  6. 6) A. A. Tseng, Y. T. Chen and K. J. Ma: Opt. Lasers Eng. 41 (2004) 827.

    Article  Google Scholar 

  7. 7) W. W. Duley: UV Lasers Effects and Applications in Materials Science (Cambridge University Press, New York, 1996).

    Google Scholar 

  8. 8) R. Srinivasan, M. Smrtic and S. Babu: J. Appl. Phys. 59 (1986) 3861.

    Article  ADS  Google Scholar 

  9. 9) H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther and J. Troe: J. Appl. Phys. 83 (1998) 5458.

    ADS  Google Scholar 

  10. 10) J. P. Holman: Experimental Methods for Engineers (McGraw-Hill, New York, 2001) 7th ed.

    Google Scholar 

  11. 11) H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy and G.-D. Khoe: IEEE J. Sel. Top. Quantum Electron. 7 (2001) 461.

    Google Scholar 

  12. 12) Y. Shuto, S. Tohno, S. Yanagi, M. Ohno and R. Nagase: IEICE Trans. Electron. E87-C (2004) 1302.

    Google Scholar 

  13. 13) K. Katsura, M. Usui, N. Sato, A. Ohki, N. Tanaka, N. Matsuura, T. Kagawa, K. Tateno, M. Hikita, R. Yoshimura and Y. Ando: IEEE Trans. Adv. Packag. 22 (1999) 551.

    Article  Google Scholar 

  14. 14) M. He, X. Yuan, N. Q. Ngo, W. C. Cheong and J. Bu: Appl. Opt. 42 (2003) 7174.

    ADS  Google Scholar 

  15. 15) Z. L. Liau, D. W. Nam and R. G. Waarts: Appl. Opt. 33 (1994) 7371.

    Article  ADS  Google Scholar 

  16. 16) J. Ihlemann and B. Wolff-Rottke: Appl. Surf. Sci. 106 (1996) 282.

    Article  ADS  Google Scholar 

  17. 17) C. J. Hayden: J. Micromech. Microeng. 13 (2003) 599.

    Article  ADS  Google Scholar 

  18. 18) K. Naessens, H. Ottevaere, R. Baets, P. V. Daele and H. Thienpont: Appl. Opt. 42 (2003) 6349.

    ADS  Google Scholar 

  19. 19) Y.-C. Lee, C.-M. Chen and C.-Y. Wu: Sens. Actuators A 117 (2005) 349.

    Google Scholar 

  20. 20) G. Levy-Yurista and A. A. Friesem: Appl. Phys. B 72 (2001) 921.

    ADS  Google Scholar 

  21. 21) K. Harakawa, K. Yamanaka, K. Kageyama, M. Masakage, M. Togashi and Y. Hashimoto: Proc. 2002 Asia-Pacific Microwave Conf., 2002, paper-FR3B-5.

  22. 22) H. Yokokawa, A. Kondo, O. Hashimoto, T. Soh, K. Ono and M. Toyota: Electron. Commun. Jpn. Part I 87 (2004) 60.

    Google Scholar 

  23. 23) B. Baekelandt, F. Olyslager and D. De Zutter: Proc. 1995 IEEE Int. Symp. Electromagnetic Compatibility, 1995, p. 573.

  24. 24) T. Soh, A. Kondo, M. Toyota and O. Hashimoto: IEEE Int. Symp. Electromagnetic Compatibility, 2003, No. 1, p. 149.

  25. 25) J.-H. Oh, K.-S. Oh, C.-G. Kim and C.-S. Hong: Composites B 35 (2004) 49.

    Google Scholar 

  26. 26) K. Janssens, L. Vincze, B. Vekemans, F. Adams, M. Haller and A. Knöchel: J. Anal. At. Spectrom. 13 (1998) 339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ampere A. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YT., Naessens, K., Baets, R. et al. Ablation of Transparent Materials Using Excimer Lasers for Photonic Applications. OPT REV 12, 427–441 (2005). https://doi.org/10.1007/s10043-005-0427-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-005-0427-x

Key words

Navigation