Skip to main content
Log in

Polarization-maintaining photonic crystal fibers with near-zero flattened dispersion in 1.06 μm waveband for medical applications

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper we present the design of a modified hexagonal photonic crystal fiber (PCF) having high birefringence and a near-zero flattened dispersion. Using the finite-difference method (FDM), it is shown that the proposed multiple Gedoped core hexagonal PCF exhibits a high birefringence of order 10−3 and a nearly zero flattened dispersion in the optical coherence tomography (OCT) waveband. In addition, the proposed PCF has a confinement loss of less than 10−8 dB/m at 1.06 μm. PCFs with such properties are considered suitable for both endoscopic OCT and other experimental setups employing 1.06 μm lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bourguin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting, and D. Kopf: Opt. Express 11 (2003) 3290.

    Article  ADS  Google Scholar 

  2. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler: Opt. Express 11 (2003) 1411.

    Article  ADS  Google Scholar 

  3. P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen: Opt. Express 12 (2004) 3532.

    Article  ADS  Google Scholar 

  4. M. K. Al-Qaisi and T. Akkin: Opt. Express 16 (2008) 13032.

    Article  ADS  Google Scholar 

  5. L. Wang and D. Yang: Opt. Express 15 (2007) 8892.

    Article  ADS  Google Scholar 

  6. Y. C. Liu and Y. Lai: Opt. Express 13 (2005) 225.

    Article  ADS  Google Scholar 

  7. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong: Opt. Lett. 32 (2007) 469.

    Article  ADS  Google Scholar 

  8. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin: Opt. Lett. 21 (1996) 1547.

    Article  ADS  Google Scholar 

  9. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro: Opt. Express 12 (2004) 5082.

    Article  ADS  Google Scholar 

  10. T. A. Birks, J. C. Knight, and P. St. J. Russell: Opt. Lett. 22 (1997) 961.

    Article  ADS  Google Scholar 

  11. L. P. Shen, W. P. Huang, and S. S. Jian: J. Lightwave Technol. 21 (2003) 1644.

    Article  ADS  Google Scholar 

  12. F. Begum, Y. Namihira, S. Kaijage, S. M. A. Razzak, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou: IEEJ Trans. Electron. Inf. Syst. 129 (2009) 1039.

    Article  Google Scholar 

  13. N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Razzak, and N. Zou: Opt. Rev. 15 (2008) 91.

    Article  Google Scholar 

  14. S. Kim, C. S. Kee, and C. G. Lee: Opt. Express 17 (2009) 7952.

    Article  ADS  Google Scholar 

  15. M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre: Opt. Express 17 (2009) 6931.

    Article  ADS  Google Scholar 

  16. S. Kawanishi, T. Yamamoto, H. Kubota, M. Tanaka, and S. Yamaguchi: IEICE Trans. Electron. E87-C (2004) 336.

    Google Scholar 

  17. S. F. Kaijage, Y. Namihira, N. H. Hai, F. Begum, S. M. A. Razzak, T. Kinjo, H. Higa, and N. Zou: Opt. Rev. 15 (2008) 31.

    Article  Google Scholar 

  18. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson: Opt. Express 14 (2006) 4445.

    Article  ADS  Google Scholar 

  19. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri: IEE Proc. Optoelectron. 141 (1994) 281.

    Article  Google Scholar 

  20. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama: IEEE Photonics Technol. Lett. 8 (1996) 652.

    Article  ADS  Google Scholar 

  21. K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata: IEICE Trans. Electron. E89-C (2006) 830.

    Article  Google Scholar 

  22. F. Begum, Y. Namihira, S. M. A. Razzak, and N. Zou: IEICE Trans. Electron. E90-C (2007) 607.

    Article  Google Scholar 

  23. S. M. A. Razzak and Y. Namihira: IEEE Photonics Technol. Lett. 20 (2008) 249.

    Article  ADS  Google Scholar 

  24. G. P. Agrawal: Nonlinear Fiber Optics (Academic Press, San Diego, CA, 1995) 2nd ed.

    Google Scholar 

  25. A. Bjarklev, J. Broeng, and A. S. Bjarklev: Photonic Crystal Fibers (Kluwer, Norwell, MA, 2003).

    Google Scholar 

  26. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa: Opt. Fiber Technol. 11 (2005) 101.

    Article  ADS  Google Scholar 

  27. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts: Opt. Express 10 (2002) 609.

    ADS  Google Scholar 

  28. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson: Opt. Express 13 (2005) 3728.

    Article  ADS  Google Scholar 

  29. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk: IEEE Photonics Technol. Lett. 16 (2004) 1065.

    Article  ADS  Google Scholar 

  30. J. Olszewski, M. Szpulak, and W. Urbańczyk: Opt. Express 13 (2005) 6015.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinjo, T., Namihira, Y., Arakaki, K. et al. Polarization-maintaining photonic crystal fibers with near-zero flattened dispersion in 1.06 μm waveband for medical applications. OPT REV 17, 66–73 (2010). https://doi.org/10.1007/s10043-010-0012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-010-0012-9

Keywords

Navigation