Skip to main content
Log in

Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bouma: Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).

    Google Scholar 

  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto: Science 254 (1991) 1178.

    Article  ADS  Google Scholar 

  3. P. Targowski, M. Góra, and M. Wojtkowski: Laser Chem. 2006 (2006) 35373.

    Google Scholar 

  4. D. Stifter: Appl. Phys. B 88 (2007) 337.

    Article  Google Scholar 

  5. A. Fercher, C. Hitzenberger, E. Moreno-Barriuso, M. Sticker, R. Leitgeb, and H. Sattman: Proc. SPIE 4160 (2009) 63.

    Article  Google Scholar 

  6. E. Alarousu: Dr. Thesis, Faculty of Technology, University of Oulu (2006).

  7. J. M. A. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski: J. Pharm. Sci. 99 (2009) 385.

    Article  Google Scholar 

  8. M. Juuti, H. Tuononen, T. Prykäri, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen: Meas. Sci. Technol. 20 (2009) 015301.

    Article  ADS  Google Scholar 

  9. K.-E. Peiponen, E. Alarousu, M. Juuti, R. Silvennoinen, A. Oksman, R. Myllylä, and T. Prykäri: Opt. Eng. 45 (2006) 043601.

    Article  ADS  Google Scholar 

  10. M. Juuti, T. Prykäri, E. Alarousu, H. Koivula, M. Myllys, A. Lähteelä, M. Toivakka, J. Timonen, R. Myllylä, and K.-E. Peiponen: Colloids Surf. A 299 (2007) 101.

    Article  Google Scholar 

  11. T. Prykäri, M. Tuominen, E. Alarousu, J. Czajkowski, and R. Myllylä: Proc. 2nd Int. Top. Meet. Optical Sensing and Artificial Vision (OSAV2008), 2008, p. 410.

  12. G. Chinga and T. Helle: J. Pulp Pap. Sci. 29 (2003) 179.

    Google Scholar 

  13. Y. Arai and K. Nojima: Proc. Coating Conf., 1997, p. 133.

  14. T. Prykäri, E. Alarousu, J. Kuivaniemi, J. Czajkowski, and R. Myllylä: Proc. 2nd Int. Top. Meet. Optical Sensing and Artificial Vision (OSAV2008), 2008, p. 111.

  15. E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä: Meas. Sci. Technol. 16 (2005) 1131.

    Article  ADS  Google Scholar 

  16. E. Alarousu, T. Prykäri, J. Palosaari, and R. Myllylä: Proc. 5th ODIMAP, 2006, p. 210.

  17. G. Genty: Dr. Thesis: Faculty of Technology, Helsinki University of Technology (2004).

  18. M. Lehtonen: M. Sc. Thesis, Faculty of Technology, Helsinki University of Technology (2002).

  19. P. Hosek, T. Prykäri, E. Alarousu, and R. Myllylä: Assoc. Lab. Autom. 14 (2009) 59.

    Article  Google Scholar 

  20. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski: Opt. Express 17 (2009) 4842.

    Article  ADS  Google Scholar 

  21. S. Moon and D. Y. Kim: Opt. Express 14 (2006) 11575.

    Article  ADS  Google Scholar 

  22. T.-J. Ahn, Y. Park, J.-C. Kieffer, and J. Azaña: Opt. Express 15 (2008) 4597.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuukka Prykäri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prykäri, T., Czajkowski, J., Alarousu, E. et al. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. OPT REV 17, 218–222 (2010). https://doi.org/10.1007/s10043-010-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-010-0039-y

Keywords

Navigation