Skip to main content

Advertisement

Log in

Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30–70%, compared to the traditional red-free illumination imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U., Shaw, J.E.: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103(2), 137–149 (2014)

    Article  Google Scholar 

  2. Koski, S.: Diabetesbarometri 2010, (Diabetes barometer 2010, published in Finnish) DEHKO, The Finnish Diabetes Association, 2011 [Online]. Retrieved: http://www.diabetes.fi/files/1377/Diabetesbarometri_2010.pdf

  3. Jarvala, T., Raitanen, J., Rissanen, P.: Diabeteksen kustannukset Suomessa 1998–2007, (The costs of diabetes in Finland 1998–2007, published in Finnish), The Finnish Diabetes Association and Tampere University, 2010 [Online]. Retrieved: http://www.diabetes.fi/files/4118/Kustannusraportti_2010_netti.pdf

  4. Sivaprasad, S., Gupta, B., Crosby-Nwaobi, R., Evans, J.: Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv. Ophthalmol. 57(4), 347–370 (2012)

    Article  Google Scholar 

  5. Fleming, A.D., Philip, S., Goatman, K., Olson, J., Sharp, P.F.: Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imag. 25(9), 1223–1232 (2006)

    Article  Google Scholar 

  6. Kubecka, L., Jan, J., Kolar, R.: Retrospective illumination correction of retinal images. J. Biomed. Imaging 2010(11), 780262 (2010). doi:10.1155/2010/780262

  7. Leahy, C., O’Brien, A., Dainty, C.: Illumination correction of retinal images using Laplace interpolation. Appl. Opt. 51(35), 8383–8389 (2012)

    Article  ADS  Google Scholar 

  8. Youssif, A.A., Ghalwash, A.Z., Ghoneim, A.S.: Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. In: Proceedings of the Third Cairo International Biomedical Engineering Conference (2006), pp. 1–5

  9. Feng, P., Pan, Y., Wei, B., Jin, W., Mi, D.: Enhancing retinal image by the Contourlet transform. Pattern Recognit. Lett. 28(4), 516–522 (2007)

    Article  Google Scholar 

  10. Shimahara, T., Okatani, T., Deguchi, K.: Contrast enhancement of fundus images using regional histograms for medical diagnosis. In: SICE 2004 Annual Conference, pp. 650–653

  11. Cornforth, D.J., Jelinek, H.F., Leandro, J.J.G., Soares, J.V.B., Cesar-Jr, R.M., Cree, M.J., Mitchell, P., Bossamaier, T.: Development of retinal blood vessel segmentation methodology using wavelet transforms for assessment of diabetic retinopathy. In: Proceedings of 8th Asia Pacific Symposium Intelligent and Evolutionary Systems, pp. 50–60 (2004)

  12. Youssif, A.A.H.A.R., Ghalwash, A.Z., Ghoneim, A.R.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008)

  13. Hipwell, J.H., Strachan, F., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool. Diabet. Med. 17(8), 588–594 (2000)

    Article  Google Scholar 

  14. Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Pietilä, J., Uusitalo, H.: Spectral imaging of the human retina and computationally determined optimal illuminants for diabetic retinopathy lesion detection. J. Imaging Sci. Technol. 55(3), 1–10 (2011)

    Article  Google Scholar 

  15. Bartczak, P., Čerāne, D., Fält, P., Ylitepsa, P., Hietanen, E., Penttinen, N., Laaksonen, L., Lensu, L., Hauta-Kasari, M., Uusitalo, H.: Spectrally tunable light source based on digital micromirror device for retinal image contrast enhancement. Lith. J. Phys. 55(3), 174–181 (2015)

    Article  Google Scholar 

  16. Hauta-Kasari, M., Miyazawa, K., Toyooka, S., Parkkinen, J.: Spectral vision system for measuring color images. J. Opt. Soc. Am. A 16(10), 2352–2362 (1999)

    Article  ADS  Google Scholar 

  17. Brown, S.W., Santana, C., Eppeldauer, G.P.: Development of a tunable LED-based colorimetric source. J. Res. Natl. Inst. Stand. Technol. 107(4), 363–371 (2002)

    Article  Google Scholar 

  18. Tominaga, S., Horiuchi, T., Kakinuma, H., Kimachi, A.: Spectral imaging with a programmable light source. In: Color and Imaging Conference, vol. 2009 of Journal of Imaging Science and Technology, pp. 133–138

  19. Chakrova, N., Rieger, B., Stallinga, S.: Development of a DMD-based fluorescence microscope. In: Proceedings of SPIE BiOS, vol. 9330, p. 933008 (2015)

  20. Muller, M.S., Green, J.J., Baskaran, K., Ingling, A.W., Clendenon, J.L., Gast, T.J., Elsner, A.E.: Non-mydriatic confocal retinal imaging using a digital light projector. Proc. SPIE OPTO 9376, 93760 (2015)

    ADS  Google Scholar 

  21. Chuang, C.H., Lo, Y.L.: Digital programmable light spectrum synthesis system using a digital micromirror device. Appl. Opt. 45(32), 8308–8314 (2006)

    Article  ADS  Google Scholar 

  22. Brown, S.W., Rice, J.P., Neira, J.E., Johnson, B.C., Jackson, J.D.: Spectrally tunable sources for advanced radiometric applications. J. Res. Natl. Inst. Stand. Technol. 111(5), 401–410 (2006)

    Article  Google Scholar 

  23. MacKinnon, N., Stange, U., Lane, P., MacAulay, C., Quatrevalet, M.: Spectrally programmable light engine for in vitro or molecular imaging and spectroscopy. Appl. Opt. 44(20), 33–40 (2005)

    Google Scholar 

  24. Litorja, M., Brown, S.W., Nadal, M.E., Allen, D., Gorbach, A.: Development of surgical lighting for enhanced color contrast. In: Proceedings of SPIE MI, vol. 6515, p. 65150K (2007)

  25. Shen, J., Wang, H., Wu, Y., Li, A., Chen, C., Zheng, Z.: Surgical lighting with contrast enhancement based on spectral reflectance comparison and entropy analysis. J. Biomed. Opt. 20(10), 105012–105012 (2015)

    Article  ADS  Google Scholar 

  26. Firn, K.A., Khoobehi, B.: Novel noninvasive multispectral snapshot imaging system to measure and map the distribution of human vessel and tissue hemoglobin oxygen saturation. Int. J. Ophthalmol. Res. 1(2), 48–58 (2015)

    Article  Google Scholar 

  27. Bone, R.A., Brener, B., Gibert, J.C.: Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry. Vis. Res. 47(26), 3259–3268 (2007)

    Article  Google Scholar 

  28. Xu, Y., Liu, X., Cheng, L., Su, L., Xu, X.: A light-emitting diode (LED)-based multispectral imaging system in evaluating retinal vein occlusion. Lasers Surg. Med. 47(7), 549–558 (2015)

    Article  Google Scholar 

  29. Everdell, N.L., Styles, I.B., Calcagni, A., Gibson, J., Hebden, J., Claridge, E.: Multispectral imaging of the ocular fundus using light emitting diode illumination. Rev. Sci. Instrum. 81(9), 093706 (2010)

    Article  ADS  Google Scholar 

  30. Calcagni, A., Gibson, J.M., Styles, I.B., Claridge, E., Orihuela-Espina, F.: Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging. Eye 25(12), 1562–1569 (2011)

    Article  Google Scholar 

  31. Styles, I.B., Calcagni, A., Claridge, E., Orihuela-Espina, F., Gibson, J.M.: Quantitative analysis of multi-spectral fundus images. Med. Image Anal. 10, 578–597 (2006)

    Article  Google Scholar 

  32. Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12(1), 014036 (2007)

    Article  ADS  Google Scholar 

  33. Francis, R.P., Zuzak, K.J., Ufret-Vincenty, R.: Hyperspectral retinal imaging with a spectrally tunable light source. In: Proceedings of SPIE MOEMS-MEMS, vol. 7932, pp. 793206–793206-8K (2011)

  34. Patel, S.R., Flanagan, J.G., Shahidi, A.M., Sylvestre, J.P., Hudson, C.: A prototype hyperspectral system with a tunable laser source for retinal vessel imaging. Invest. Ophthalmol. Vis. Sci. 54(8), 5163–5168 (2013)

    Article  Google Scholar 

  35. Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Uusitalo, H.: Extending diabetic retinopathy imaging from color to spectra. In: Proceedings of the Scandinavian Conference on Image Analysis 2009, pp. 149–158

  36. Delori, F.C., Webb, R.H., Sliney, D.H.: Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J. Opt. Soc. Am. A 24(5), 1250–1265 (2007)

    Article  ADS  Google Scholar 

  37. Leong, F.W., Brady, M., McGee, J.O.D.: Correction of uneven illumination (vignetting) in digital microscopy images. J. Clin. Pathol. 56(8), 619–621 (2003)

    Article  Google Scholar 

  38. Tran, K., Mendel, T.A., Holbrook, K.L., Yates, P.A.: Construction of an inexpensive, hand-held fundus camera through modification of a consumer “point-and-shoot” camera. Invest. Ophthalmol. Vis. Sci. 53(12), 7600–7607 (2012)

    Article  Google Scholar 

  39. Michelson, A.A.: Studies in Optics. University of Chicago Press, Chicago (1927)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Academy of Finland for funding (ReVision project, Funding Decision No. 259530). The strategic funding from the Faculty of Science and Forestry, University of Eastern Finland and Elsemay Börn Fund are also acknowledged. The authors would like to thank Elina Hietanen, for support and assistance with the imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Bartczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartczak, P., Fält, P., Penttinen, N. et al. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging. Opt Rev 24, 105–116 (2017). https://doi.org/10.1007/s10043-016-0300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0300-0

Keywords

Navigation