Skip to main content
Log in

An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, an all-optical RS flip-flop was proposed using nonlinear Kerr effect in photonic crystals. The proposed structure is composed of a core section and two optical switches. The core section consists of two cross-connected resonant cavities whose resonant mode are at wavelengths 1586 and 1620 nm. The cavities were designed such that the resonance of one cavity prevents the signal coupling through the other one. For designing the switch sections, a bias port was used to keep data when there is no input for the flip-flop. Therefore, when both input ports are inactive, the previous state of the flip-flop will be kept. Total footprint and maximum frequency of the proposed structure are obtained 361 μm2 and 320 GHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lau, K.Y.: Ultra-high frequency linear fiber optic systems. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Liu, L., Kumar, R., Huybrechts, K., Spuesens, T., Roelkens, G., Geluk, E.J.: An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photon. 4, 182–187 (2010)

    Article  ADS  Google Scholar 

  3. Cai, T., Bose, R., Solomon, G.S., Waks, E.: Controlled coupling of photonic crystal cavities using photochromic tuning. Appl. Phys. Lett. 102, 141118 (2013)

    Article  ADS  Google Scholar 

  4. Pu, J., Yomogida, Y., Liu, K.K., Li, L.J., Iwasa, Y., Takenobu, T.: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano lett. 12, 4013–4017 (2012)

    Article  ADS  Google Scholar 

  5. Peres, N.M., Bludov, Y.V.: Enhancing the absorption of graphene in the terahertz range. Europhys. Lett. 101, 58002 (2013)

    Article  ADS  Google Scholar 

  6. Ferreira, A., Peres, N., Ribeiro, R., Stauber, T.: Graphene-based photodetector with two cavities. Phys. Rev. B 85, 115438 (2012)

    Article  ADS  Google Scholar 

  7. Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Optik-Internat. J. Light Electron. Opt. 126, 4775–4781 (2015)

    Article  Google Scholar 

  8. Noori, M., Soroosh, M., Baghban, H.: An approach to achieve all-angle, polarization-insensitive and broad-band self-collimation in 2D square-lattice photonic crystals. Ukr. J. Phys. Opt. 12, 85–94 (2015)

    Article  Google Scholar 

  9. Noori, M., Soroosh, M., Baghban, H.: Highly efficient self-collimation based waveguide for Mid-IR applications. Photon. Nanostruc. Fundament. Appl. 19, 1–11 (2016)

    Article  ADS  Google Scholar 

  10. Noori, M., Soroosh, M., Baghban, H.: Design of highly efficient polarization beam splitter based on self-collimation on Si platform. J. Mod. Opt. 64, 491–499 (2017)

    Article  ADS  Google Scholar 

  11. Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt. Eng. 54, 037111 (2015)

    Article  ADS  Google Scholar 

  12. Brandão, E.R., Vasconcelos, M.S., Anselmo, D.H.: Octonacci photonic crystals with negative refraction index materials. Opt. Mat. 62, 584–592 (2016)

    Article  Google Scholar 

  13. Kumar, P., Kumar, V., Roy, J.S.: Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik-Internat. J. Light Electron. Opt. 144, 363–369 (2017)

    Article  Google Scholar 

  14. Jahromi, M.A.F., Bananej, A.: Tunable slow light in 1-D photonic crystal. Optik-Internat. J. Light Electron. Opt. 127, 3889–3891 (2016)

    Article  Google Scholar 

  15. Janrao, N., Janyani, V.: Slow light photonic crystal waveguide with large quality factor. Optik-Internat. J. Light Electron. Opt. 127, 1260–1264 (2016)

    Article  Google Scholar 

  16. Musavizadeh, S.M., Soroosh, M., Mehdizadeh, F.: Optical filter based on photonic crystal. Ind. J. Pure Appl. Phys. 53, 736–739 (2015)

    Google Scholar 

  17. Vaisi, A., Soroosh, M., Mahmoudi, A.: Low loss and high-quality factor optical filter using photonic crystal-based resonant cavity. J. Opt. Commun. (2017) (published online)

  18. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: Special optical communication filter based on Thue-Morse photonic crystal structure. Opt. Appl. 46, 145–152 (2016)

    MATH  Google Scholar 

  19. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Optik-Internat. J. Light Electron. Opt. 140, 331–337 (2017)

    Article  Google Scholar 

  20. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon. Net. Commun. 34, 248–257 (2017)

    Article  Google Scholar 

  21. Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Opt. Appl. 46, 553–564 (2016)

    Google Scholar 

  22. Lin, W.P., Hsu, Y.F., Kuo, H.L.: Design of optical NOR logic gates using two dimension photonic crystals. Am. J. Mod. Phys. 2, 144–147 (2013)

    Article  Google Scholar 

  23. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik-Internat. J. Light Electron. 130, 1214–1221 (2017)

    Article  MATH  Google Scholar 

  24. Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photon. Nanostruct. Fundam. Appl. 24, 29–34 (2017)

    Article  ADS  Google Scholar 

  25. Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)

    Article  ADS  Google Scholar 

  26. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64, 1233–1239 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quan. Electron. 48, 20 (2016)

    Article  Google Scholar 

  28. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2016)

    Article  Google Scholar 

  29. Yang, Y.P., Lin, K.C., Yang, I.C., Lee, K.Y., Lee, W.Y., Tsai, Y.T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik-Internat. J. Light Electron. 142, 354–359 (2017)

    Article  Google Scholar 

  30. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9, 1–11 (2017)

    Article  Google Scholar 

  31. Moniem, T.A., El-Din, E.S.: Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals. Opt. Commun. 402, 36–40 (2017)

    Article  ADS  Google Scholar 

  32. Li, S., Yu, C., Kang, Z., Wei, S., Farrell, G., Wu, Q.: Experimental demonstration of impact of optical nonlinearity on photonic time stretched analog-to-digital converter based on photonic crystal fiber. Optik-Internat. J. Light Electron. 126, 4936–4939 (2015)

    Article  Google Scholar 

  33. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)

    Article  ADS  Google Scholar 

  34. Shinya, A., Mitsugi, S., Tanabe, T., Notomi, M., Yokohama, I., Takara, H.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Exp. 14, 1230–1235 (2006)

    Article  ADS  Google Scholar 

  35. Notomi, M., Tanabe, T., Shinya, A., Kuramochi, E., Taniyama, H., Mitsugi, S.: Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Exp. 15, 17458–17481 (2017)

    Article  ADS  Google Scholar 

  36. Abbasi, A., Noshad, M., Ranjbar, R., Kheradmand, R.: Ultra compact and fast All Optical Flip Flop design in photonic crystal platform. Opt. Commun. 285, 5073–5078 (2012)

    Article  ADS  Google Scholar 

  37. Moniem, T.A.: All-optical S-R flip flop using 2-D photonic crystal. Opt. Quan. Electron. 47, 2843–2851 (2015)

    Article  Google Scholar 

  38. Sun, J.Z., Li, J.S.: Photonic crystal-based waveguide terahertz wave set-reset latch. Optik-Internat. J. Light Electron. 145, 49–55 (2017)

    Article  Google Scholar 

  39. Mano, M.M., Ciletti, M.D.: Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog. Prentice Hall, Englewood Cliffs (2017)

    Google Scholar 

  40. Ogusu, K., Yamasaki, J., Maeda, Sh: Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265–269 (2004)

    Article  ADS  Google Scholar 

  41. Haus, H.A.: Waves and fields in optoelectronics. Prentice Hall, Englewood Cliffs (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soroosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamanian-Dehkordi, S.S., Soroosh, M. & Akbarizadeh, G. An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt Rev 25, 523–531 (2018). https://doi.org/10.1007/s10043-018-0443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0443-2

Keywords

Navigation