Skip to main content
Log in

Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling

  • ORIGINAL ARTICLE
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

In this article, a three-dimensional transient numerical approach coupled with fluid–structure interaction for the modeling of an aortic trileaflet heart valve at the initial opening stage is presented. An arbitrary Lagrangian–Eulerian kinematical description together with an appropriate fluid grid was used for the coupling strategy with the structural domain. The fluid dynamics and the structure aspects of the problem were analyzed for various Reynolds numbers and times. The fluid flow predictions indicated that at the initial leaflet opening stage a circulation zone was formed immediately downstream of the leaflet tip and propagated outward as time increased. Moreover, the maximum wall shear stress in the vertical direction of the leaflet was found to be located near the bottom of the leaflet, and its value decreased sharply toward the tip. In the horizontal cross section of the leaflet, the maximum wall shear stresses were found to be located near the sides of the leaflet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JT Baldwin JM Tarbell (1991) ArticleTitleMean velocities and Reynolds stresses within regurgitant jets produced by tilting disc valves ASAIO Trans 37 348–349

    Google Scholar 

  2. AA Sakhaeimanesh YS Morsi (1999) ArticleTitleAnalysis of regurgitation, mean systolic pressure drop and energy losses for two artificial aortic valves J Med Eng Tech 22 IssueID2 63–68 Occurrence Handle10.1080/030919099294302

    Article  Google Scholar 

  3. H Reul K Potthast (1998) ArticleTitleDurability/wear testing of heart valve substitutes J Heart Valve Dis 7 IssueID2 151–157 Occurrence Handle9587854 Occurrence Handle1:STN:280:DyaK1c3kvFCgtw%3D%3D

    PubMed  CAS  Google Scholar 

  4. Q Lin YS Morsi B Smith W Yang (2004) ArticleTitleNumerical simulation and structure verification of jellyfish heart valve Int J Comput Appl Tech 21 2–7 Occurrence Handle10.1504/IJCAT.2004.005332

    Article  Google Scholar 

  5. YS Morsi IE Birchall FL Rosenfeldt (2004) ArticleTitleArtificial aortic valves: an overview Int J Artif Organs 27 445–451 Occurrence Handle15291075 Occurrence Handle1:STN:280:DC%2BD2czos12rtQ%3D%3D

    PubMed  CAS  Google Scholar 

  6. YS Morsi IE Birchall (2005) ArticleTitleTissue engineering a functional aortic heart valve: an appraisal Future Cardiol 1 IssueID3 405–411 Occurrence Handle10.1517/14796678.1.3.405 Occurrence Handle1:CAS:528:DC%2BD2MXkvVGitr8%3D Occurrence Handle19804123

    Article  CAS  PubMed  Google Scholar 

  7. AP Yoganathan Z He SC Jones (2004) ArticleTitleFluid mechanics of heart valves Annu Rev Biomed Eng 6 331–362 Occurrence Handle15255773 Occurrence Handle10.1146/annurev.bioeng.6.040803.140111 Occurrence Handle1:CAS:528:DC%2BD2cXns1yitbs%3D

    Article  PubMed  CAS  Google Scholar 

  8. CS Peskin DM McQueen (1980) ArticleTitleModelling prosthetic heart valves for numerical analysis of blood flow in the heart J Comput Phys 37 113–132 Occurrence Handle10.1016/0021-9991(80)90007-8

    Article  Google Scholar 

  9. CS Peskin DM McQueen (1996) Fluid dynamics of the heart and its valves HG Othmer FR Adler MA Lewis JC Dallon (Eds) Case studies in mathematical modeling – ecology, physiology, and cell biology Prentice-Hall Englewood Cliffs 309–337

    Google Scholar 

  10. CS Peskin (2002) ArticleTitleThe immersed boundary methods Acta Numer 11 479–517 Occurrence Handle10.1017/S0962492902000077

    Article  Google Scholar 

  11. VB Makhijani HQ Yang PJ Dionne MJ Thubrikar (1997) ArticleTitleThree-dimensional coupled fluid–structure simulation of pericardial bioprosthetic aortic valve function ASAIO J 43 387–392 Occurrence Handle10.1097/00002480-199709000-00005

    Article  Google Scholar 

  12. M Bathe RD Kamm (1999) ArticleTitleA fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery J Biomech Eng 121 361–369 Occurrence Handle10464689 Occurrence Handle1:STN:280:DyaK1Mzptl2mtw%3D%3D

    PubMed  CAS  Google Scholar 

  13. J De Hart GWM Peters PJG Schreurs FPT Baaijens (2003) ArticleTitleA three-dimensional analysis of fluid–structure interaction in the aortic valve J Biomech 36 103–112 Occurrence Handle12485644 Occurrence Handle10.1016/S0021-9290(02)00244-0 Occurrence Handle1:STN:280:DC%2BD38jitlaqtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  14. FPT Baaijens (2001) ArticleTitleA fictitious domain/mortar element method for fluid–structure interaction Int J Numer Method Fluids 35 743–761 Occurrence Handle10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A

    Article  Google Scholar 

  15. R Glowinski TW Pan JA Periaux (1997) ArticleTitleLargrange multiplier/fictitious domain method for the numerical simulation of incompressible flow around moving rigid bodies: (I) case where the rigid body motions are known a priori Comptes Rendus de I'Academie des Sciences Series I Mathematics 325 783–791 Occurrence Handle10.1016/S0764-4442(97)80060-2

    Article  Google Scholar 

  16. R Glowinski (2003) Finite element for incompressible viscous flow PG Ciarlet JL Lion (Eds) Handbook of numerical analysis, vol IX North-Holland Amsterdam

    Google Scholar 

  17. J De Hart FPT Baaijens GWM Peters PJG Schreurs (2003) ArticleTitleA computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve J Biomech 63 699–712 Occurrence Handle10.1016/S0021-9290(02)00448-7

    Article  Google Scholar 

  18. J Donea (1981) ArticleTitleAn arbitrary Lagrangian–Eulerian finite element method for transient fluid–structure interactions Comput Methods Appl Mech Eng 33 689–723 Occurrence Handle10.1016/0045-7825(82)90128-1

    Article  Google Scholar 

  19. F Bertrand PA Tanguy F Thibault (1997) ArticleTitleA three-dimensional fictitious domain method for incompressible fluid flow problems Int J Numer Methods Fluids 25 719–736 Occurrence Handle10.1002/(SICI)1097-0363(19970930)25:6<719::AID-FLD585>3.0.CO;2-K Occurrence Handle1:CAS:528:DyaK2sXmtlamurs%3D

    Article  CAS  Google Scholar 

  20. YS Morsi AA Sakhaeimanesh (2000) ArticleTitleFlow characteristics past jellyfish and St. Vincent valves in the aortic position under physiological pulsatile flow conditions Artif Organs 24 564–574 Occurrence Handle10916068 Occurrence Handle10.1046/j.1525-1594.2000.06505.x Occurrence Handle1:STN:280:DC%2BD3cvmtF2qtw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  21. A Huerta WK Liu (1988) ArticleTitleViscous flow with large free surface motion Comput Methods Appl Mech Eng 69 277–324 Occurrence Handle10.1016/0045-7825(88)90044-8

    Article  Google Scholar 

  22. H Jiang G Campbell D Boughner WK Wan M Quantz (2004) ArticleTitleDesign and manufacture of polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis Med Eng Phys 26 269–277 Occurrence Handle15121052 Occurrence Handle10.1016/j.medengphy.2003.10.007

    Article  PubMed  Google Scholar 

  23. JMT Penrose CJ Staples (2002) ArticleTitleImplicit fluid–structure coupling for simulation of cardiovascular problems Int J Numer Methods Fluids 40 467–478 Occurrence Handle10.1002/fld.306

    Article  Google Scholar 

  24. YR Woo FP Williams AP Yoganathan (1983) ArticleTitleSteady and pulsatile flow studies on a trileaflet heart valve prosthesis Scand J Thorac Cardiovasc Surg 17 227–236 Occurrence Handle6648398 Occurrence Handle1:STN:280:DyaL2c%2Fnt12isA%3D%3D

    PubMed  CAS  Google Scholar 

  25. DM Stevenson AP Yoganathan (1985) ArticleTitleNumerical simulation of steady turbulent flow through trileaflet aortic heart valves-I. Computational scheme and methodology J Biomech 18 899–907 Occurrence Handle4077858 Occurrence Handle10.1016/0021-9290(85)90034-X Occurrence Handle1:STN:280:DyaL28%2FosF2msQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yos S. Morsi PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsi, Y., Yang, W., Wong, C. et al. Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10, 96–103 (2007). https://doi.org/10.1007/s10047-006-0365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-006-0365-9

Key words

Navigation