Skip to main content
Log in

Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The closing velocity of the leaflets of mechanical heart valves is excessively rapid and can cause the cavitation phenomenon. Cavitation bubbles collapse and produce high pressure which then damages red blood cells and platelets. The closure mechanism of the trileaflet valve uses the vortices in the aortic sinus to help close the leaflets, which differs from that of the monoleaflet or bileaflet mechanical heart valves which mainly depends on the reverse flow. We used the commercial software program Fluent to run numerical simulations of the St. Jude Medical bileaflet valve and a new trileaflet mechanical heart valve. The results of these numerical simulations were validated with flow field experiments. The closing velocity of the trileaflet valve was clearly slower than that of the St. Jude Medical bileaflet valve, which would effectively reduce the occurrence of cavitation. The findings of this study are expected to advance the development of the trileaflet valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levine MN, Raskob G, Hirsh J. Hemorrhagic complications of long-term anticoagulation therapy. Chest. 1989;95:265–365.

    Google Scholar 

  2. Edmunds LHJ. Thrombotic and bleeding complications of prosthetic heart valves. Ann Thorac Surg. 1987;44:430–45.

    Article  PubMed  Google Scholar 

  3. Carey RF, Porter JM, Richard G, Luck C, Shu MCS, Guo X. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis. 1995;4:532–41.

    PubMed  CAS  Google Scholar 

  4. Hwang NHC. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis. 1998;7:140–50.

    PubMed  CAS  Google Scholar 

  5. Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R. Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis. 1994;3:S2–7.

    PubMed  Google Scholar 

  6. He Z, Xi B, Zhu K, Hwang NHC. Mechanicals of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis. 2001;10:666–74.

    PubMed  CAS  Google Scholar 

  7. Yoganathan AP, Corcoran WH, Harrison EC, Carl JR. The Bjork-Shiley aortic valve-prosthesis: flow characteristics, thrombus formation and tissue overgrowth. Circulation. 1978;58:70–6.

    Article  PubMed  CAS  Google Scholar 

  8. Liu JS, Lu PC, Chu SH. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng. 2000;122:118–24.

    Article  PubMed  CAS  Google Scholar 

  9. Woo YR, Yoganathan AJ. In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical aortic heart valve prostheses. Life Support Syst. 1985;3:283–312.

    PubMed  CAS  Google Scholar 

  10. Li CP, Lu PC, Liu JS, Lo CW, Hwang NHC. Role of vortices in cavitation formation in the flow across a mechanical heart valve. J Heart Valve Dis. 2008;17:435–45.

    PubMed  Google Scholar 

  11. Gross JM, Guo GX, Hwang NHC. Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO J. 1991;37:M357–8.

    CAS  Google Scholar 

  12. Lu PC, Liu JS, Huang RH, Lo CW, Lai HC, Hwang NHC. The closing behavior of mechanical aortic heart valve prostheses. ASAIO J. 2004;50:294–300.

    Article  PubMed  Google Scholar 

  13. Akutsu T, Saito J, Imai R, Suzuki T, Cao XD. Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. J Artif Organs. 2008;11:75–90.

    Article  PubMed  Google Scholar 

  14. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech. 2008;41:2539–50.

    Article  PubMed  Google Scholar 

  15. Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M. 3-D simulation of St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experiment validation. J Heart Valve Dis. 2004;13:804–13.

    PubMed  Google Scholar 

  16. Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids. 2007;19:067105.

    Article  Google Scholar 

  17. Bluestein D, Rambod E, Gharib M. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng. 2000;122:125–34.

    Article  PubMed  CAS  Google Scholar 

  18. Alemu Y, Bluestein D. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs. 2007;31:677–88.

    Article  PubMed  Google Scholar 

  19. Dumont K, Vierendeels J, Kaminsky R, Van Nooten G, Verdonck P, Bluestein D. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng. 2007;129:558–65.

    Article  PubMed  Google Scholar 

  20. Dumont K, Stijnen JMA, Vierendeels J, Van De Vosse FN, Verdonck PR. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in Fluent. Comp Methods Biomech Biomed Eng. 2004;7:139–46.

    Article  CAS  Google Scholar 

  21. Bang JS, Yoo SM, Kim CN. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J. 2006;52:234–42.

    Article  PubMed  Google Scholar 

  22. Choi CR, Kim CN. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J. 2009;55:428–37.

    Article  PubMed  Google Scholar 

  23. Ge L, Sotiropoulos F. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys. 2007;225:1782–809.

    Article  PubMed  Google Scholar 

  24. Sotiropoulos F, Borazjani I. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput. 2009;47:245–56.

    Article  PubMed  Google Scholar 

  25. Tullio MDD, Cristallo A, Balaras E, Verzicco R. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech. 2009;622:259–90.

    Article  Google Scholar 

  26. Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO J. 2011;57:188–96.

    Article  PubMed  Google Scholar 

  27. Dumont K, Vierendeels J, Verdonck PR. Feasibility study of the dynamic mesh model in Fluent for fluid-structure interaction of a heart valve. In: Brebbia CA, Arnez ZM, Solina F, Stankovski V, editors. Simulations in biomedicine V advances in computational bioengineering. Boston: WIT Press; 2003. p. 169–76.

    Google Scholar 

  28. Vierendeels J, Dumont K, Dick E, Verdonck PR. Stabilization of a fluid-structure coupling procedure for rigid body motion. In: Proc 33rd AIAA Fluid Dynamics Conference and Exhibit; 2003. p. 3720.

  29. Bellhouse BJ, Talbot L. The fluid mechanics of the aortic valve. J Fluid Mech. 1969;35:721–35.

    Article  Google Scholar 

  30. Lo CW. Causes of cavitation phenomena in mechanical heart valves. PhD. thesis. Tamkang University, Taipei, Taiwan; 2008.

  31. Lee H, Taenaka Y, Kitamura S. Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart. ASAIO J. 2005;51:208–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Pei Li or Po-Chien Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CP., Lu, PC. Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs 15, 364–374 (2012). https://doi.org/10.1007/s10047-012-0650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-012-0650-8

Keywords

Navigation