Skip to main content

Advertisement

Log in

Study on the potential of RGD- and PHSRN-modified alginates as artificial extracellular matrices for engineering bone

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Alginate is a polysaccharide that can be crosslinked by divalent cations, such as calcium ions, to form a gel. Chemical modification is typically used to improve its cell adhesive properties for tissue engineering applications. In this study, alginates were modified with peptides containing RGD (arginine–glycine–aspartic acid) or PHSRN (proline–histidine–serine–arginine–asparagine) sequences from fibronectin to study possible additive and synergistic effects on adherent cells. Alginates modified with each peptide were mixed at different ratios to form gels containing various concentrations and spacing between the RGD and PHSRN sequences. When normal human osteoblasts (NHOsts) were cultured on or in the gels, the ratio of RGD to PHSRN was found to influence cell behaviors, especially differentiation. NHOsts cultured on gels composed of RGD- and PHSRN-modified alginates showed enhanced differentiation when the gels contained >33 % RGD-alginate, suggesting the relative distribution of the peptides and the presentation to cells are important parameters in this regulation. NHOsts cultured in gels containing both RGD- and PHSRN-alginates also demonstrated a similar enhancement tendency of calcium deposition that was dependent on the peptide ratio in the gel. However, calcium deposition was greater when cells were cultured in the gels, as compared to on the gels. These results suggest that modifying this biomaterial to more closely mimic the chemistry of natural cell adhesive proteins, (e.g., fibronectin) may be useful in developing scaffolds for bone tissue engineering and provide three-dimensional cell culture systems which more closely mimic the environment of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shoichet MS, Li RH, White ML, Winn SR. Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol Bioeng. 1996;50:374–81.

    Article  PubMed  CAS  Google Scholar 

  2. Jen AC, Wake MC, Mikos AG. Hydrogels for cell immobilization. Biotechnol Bioeng. 1996;50:357–64.

    Article  PubMed  CAS  Google Scholar 

  3. Mooney DJ, Mikos AG. Growing new organs. Sci Am. 1999;280:38–43.

    Article  Google Scholar 

  4. Lee KY, Mooney DJ. Hydrogel for tissue engineering. Chem Rev. 2001;101:1869–80.

    Article  PubMed  CAS  Google Scholar 

  5. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295:1009–14.

    Google Scholar 

  6. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  PubMed  CAS  Google Scholar 

  7. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech. 2005;23:47–55.

    Article  CAS  Google Scholar 

  8. Smidsrød O, Skjåk-Bræk G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–8.

    Article  PubMed  Google Scholar 

  9. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.

    Article  PubMed  CAS  Google Scholar 

  10. Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ. Engineering growing tissues. Proc Natl Acad Sci USA. 2002;99:12025–30.

    Article  PubMed  CAS  Google Scholar 

  11. Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82:903–8.

    Article  PubMed  CAS  Google Scholar 

  12. Comisar WA, Hsiong SX, Kong HJ, Mooney DJ, Linderman JJ. Multi-scale modeling to predict ligand presentation within RGD nanopatterned hydrogels. Biomaterials. 2006;27:2322–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kong HJ, Boontheekul T, Mooney DJ. Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype. Proc Natl Acad Sci USA. 2006;103:18534–9.

    Article  PubMed  CAS  Google Scholar 

  14. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–7.

    Article  PubMed  CAS  Google Scholar 

  15. Hirano Y, Okuno M, Hayashi T, Goto K, Nakajima A. Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines. J Biomater Sci Polym Ed. 1993;4:235–43.

    Article  PubMed  CAS  Google Scholar 

  16. Masters KS, Shah DN, Walker G, Leinwand LA, Anseth KS. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J Biomed Mater Res. 2004;71A:172–80.

    Article  CAS  Google Scholar 

  17. Lee MH, Adams CS, Boettiger D, DeGrado WF, Shapiro IM, Composto RJ, Ducheyne P. Adhesion of MC3T3-E1 cells to RGD peptides of different flanking residues: detachment strength and correlation with long-term cellular function. J Biomed Mater Res. 2007;81A(150–60):2007.

    Google Scholar 

  18. Aota S, Nomizu M, Yamada KM. The short amino-acid-sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem. 1994;269:24756–61.

    PubMed  CAS  Google Scholar 

  19. Ohyama M, Suzuki N, Yamaguchi Y, Maeno M, Otsuka K, Ito K. Effect of enamel matrix derivative on the differentiation of C2C12 cells. J Periodontol. 2002;73:543–50.

    Article  PubMed  CAS  Google Scholar 

  20. Redick SD, Settles DL, Briscoe G, Erickson HP. Defining fibronectin’s cell adhesion synergy site by site-directed mutagenesis. J Cell Biol. 2000;149:521–7.

    Article  PubMed  CAS  Google Scholar 

  21. Moursi AM, Globus RK, Dmasky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci. 1997;110:2187–96.

    PubMed  CAS  Google Scholar 

  22. Fittkau MH, Zilla P, Bezuidenhout D, Lutolf MP, Human P, Hubbell JA, Davies N. The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials. 2005;26:167–74.

    Article  PubMed  CAS  Google Scholar 

  23. Petrie TA, Capadona JR, Reyes CD, García AJ. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials. 2006;27:5459–70.

    Article  PubMed  CAS  Google Scholar 

  24. Shibasaki Y, Hirohara S, Terada K, Anod T, Tanihara M. Collagen-like polypeptide Poly(Pro-Hyp-Gly) conjugated with Gly-Arg-Gly-Asp-Ser and Pro-His-Ser-Arg-Asn peptides enhances cell adhesion, migration, and stratification. Biopolymers (Pept Sci). 2011;96:302–15.

    Article  CAS  Google Scholar 

  25. Kao WJ, Lee D, Schense JC, Hubbell JA. Fibronectin modulates macrophage adhesion and FBGC formation: The role of RGD, PHSRN, and PRRARV domains. J Biomed Mater Res. 2001;55:79–88.

    Article  PubMed  CAS  Google Scholar 

  26. Benoit DSW, Anseth KS. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials. 2005;2005(26):5209–20.

    Article  Google Scholar 

  27. Mardilovich A, Craig JA, McCammon MQ, Garg A, Kokkoli E. Design of a novel fibronectin-mimic peptide—amphiphile for functionalized biomaterials. Langmuir. 2006;22:3259–64.

    Article  PubMed  CAS  Google Scholar 

  28. Lee KY, Alsberg E, Hsiong S, Comisar W, Linderman J, Ziff R, Mooney D. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nanoletters. 2004;4:1501–6.

    Article  CAS  Google Scholar 

  29. Kong HJ, Polte TR, Alsberg E, Mooney DJ. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci USA. 2005;102:4300–5.

    Article  PubMed  CAS  Google Scholar 

  30. Ochsenhirt SE, Kokkoli E, McCarthy JB, Tirrell M. Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomaterials. 2006;27:3863–74.

    Article  PubMed  CAS  Google Scholar 

  31. Gruber HE, Hanley Jr EN. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation. BMC Musculoskelet. Disord. 2000; 1:1. doi:10.1186/1471-2474-1-1. Available at: http://www.biomedcentral.com/1471-2474/1/1.

  32. Hishikawa K, Miura S, Marumo T, Yoshioka H, Mori Y, Takato T, Fujita T. Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer. Biochem Biophys Res Commun. 2004;317:1103–7.

    Article  PubMed  CAS  Google Scholar 

  33. Winters BS, Raj BK, Robinson EE, Foty RA, Corbett SA. Three-dimensional culture regulates Raf-1 expression to modulate fibronectin matrix assembly. Mol Biol Cell. 2006;17:3386–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Health and Labour Sciences Research Grants for Research on Regulatory Science of Pharmaceuticals and Medical Devices by Ministry of Health, Labour and Welfare (H24-Iyaku-Shitei-018). The authors are also grateful to Dr. Kuen Yong Lee (Hanyang University, South Korea), Dr. Hyun-Joon Kong (University of Illinois, USA), and Dr. Takuya Matsumoto (Okayama University, Japan) for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryusuke Nakaoka or Atsuko Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakaoka, R., Hirano, Y., Mooney, D.J. et al. Study on the potential of RGD- and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. J Artif Organs 16, 284–293 (2013). https://doi.org/10.1007/s10047-013-0703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-013-0703-7

Keywords

Navigation