Skip to main content
Log in

Surface effects in nanoparticles: application to maghemite -Fe O

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract:

We present a microscopic model for nanoparticles, of the maghemite-Fe2O3) type, and perform classical Monte Carlo simulations of their magnetic properties. On account of Mössbauer spectroscopy and high-field magnetisation results, we consider a particle as composed of a core and a surface shell of constant thickness. The magnetic state in the particle is described by the anisotropic classical Dirac-Heisenberg model including exchange and dipolar interactions and bulk and surface anisotropy. We consider the case of ellipsoidal (or spherical) particles with free boundaries at the surface. Using a surface shell of constant thickness nm) we vary the particle size and study the effect of surface magnetic disorder on the thermal and spatial behaviors of the net magnetisation of the particle. We study the shift in the surface “critical region” for different surface-to-core ratios of the exchange coupling constants. It is also shown that the profile of the local magnetisation exhibits strong temperature dependence, and that surface anisotropy is responsible for the non saturation of the magnetisation at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 1 September 1999 and Received in final form 3 November 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachkachi, H., Ezzir, A., Noguès, M. et al. Surface effects in nanoparticles: application to maghemite -Fe O. Eur. Phys. J. B 14, 681–689 (2000). https://doi.org/10.1007/s100510051079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100510051079

Navigation