Skip to main content
Log in

Peck tracking: a method for localizing critical features within complex pictures for pigeons

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

The pigeon is a standard animal in comparative psychology and is frequently used to investigate visuocognitive functions. Nonetheless, the strategies that pigeons use to discriminate complex visual stimuli remain a difficult area of study. In search of a reliable method to identify features that control the discrimination behaviour, pecking location was tracked using touch screen technology in a people-absent/people-present discrimination task. The correct stimuli contained human figures anywhere on the picture, but the birds were not required to peck on that part. However, the stimuli were designed in a way that only the human figures contained distinguishing information. All pigeons focused their pecks on a subarea of the distinctive human figures, namely the heads. Removal of the heads significantly impaired performance, while removal of other distinctive parts did not. Thus, peck tracking reveals the location within a complex visual stimulus that controls discrimination behaviour, and might be a valuable tool to reveal the strategies pigeons apply in visual discrimination tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan RW (1993) Control of pecking response topography by stimulus-reinforcer and response-reinforcer contingencies. In: Zeigler HP, Bischof H-J (eds) Vision, brain, and behavior in birds. MIT Press, Cambridge, MA, pp 285–300

    Google Scholar 

  • Aust U, Huber L (2001) The role of item- and category-specific information in the discrimination of people versus nonpeople images in pigeons. Anim Learn Behav 29:107–119

    Google Scholar 

  • Aust U, Huber L (2002) Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Anim Learn Behav 30:165–176

    PubMed  Google Scholar 

  • Aust U, Huber L (2003) Elemental versus configural perception in a people-present/people-absent discrimination task by pigeons. Learn Behav 31:213–224

    PubMed  Google Scholar 

  • Aust U, Huber L (2006) Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim Behav Process 32:190–195

    Article  PubMed  Google Scholar 

  • Awh E, Armstrong KM, Moore T (2006) Visual and oculomotor selection: links, causes and implications for spatial attention. Trends Cogn Sci 10:124–130

    Article  PubMed  Google Scholar 

  • Beale IL, Corballis MC (1967) Laterally displaced pecking in monocularly viewing pigeons: a possible factor in interocular mirror-image reversal. Psychon Sci 9:603–604

    Google Scholar 

  • Beale IL, Corballis MC (1968) Beak shift: an explanation for interocular mirror-image reversal in pigeons. Nature 220:82–83

    Article  CAS  PubMed  Google Scholar 

  • Bermejo R, Zeigler HP (1998) Conditioned ‘prehension’ in the pigeon: kinematics, coordination and stimulus control of the pecking response. Behav Brain Res 91:173–184

    Article  CAS  PubMed  Google Scholar 

  • Bloch S, Rivaud S, Martinoya C (1984) Comparing frontal and lateral viewing in the pigeon. III. Different patterns of eye movements for binocular and monocular fixation. Behav Brain Res 13:173–182

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Dooling RJ (1992) Perception of conspecific faces by budgerigars (Melopsittacus undulatus). I. Natural faces. J Comp Psychol 106:203–216

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Dooling RJ (1993) Perception of conspecific faces by budgerigars (Melopsittacus undulatus). II. Synthetic models. J Comp Psychol 107:48–60

    Article  CAS  PubMed  Google Scholar 

  • Brown MF, Cook RG, Lamb MA, Riley DA (1984) The relation between response and attentional shifts in pigeon compound matching-to-sample performance. Anim Learn Behav 12:41–49

    Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  CAS  PubMed  Google Scholar 

  • Cook RG (1993) The experimental analysis of cognition in animals. Psychol Sci 4:174–178

    Article  Google Scholar 

  • Cook RG (2001) Hierarchical stimulus processing in pigeons. In: Cook RG (ed) Avian visual cognition. Available http://www.pigeon.psy.tufts.edu/avc/cook/

  • Gibson BM, Wasserman EA, Schyns PG, Gosselin F (2005) Applying bubbles to localize features that control pigeon’s visual discrimination behavior. J Exp Psychol Anim Behav Process 31:376–382

    Article  PubMed  Google Scholar 

  • Gibson BM, Lazareva OF, Gosselin F, Schyns PG, Wasserman EA (2007) Nonaccidental properties underlie shape recognition in mammalian and nonmammalian vision. Curr Biol 17:336–340

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA (1983) Visually guided pecking in the pigeon (Columba livia). Brain Behav Evol 22:22–41

    Article  CAS  PubMed  Google Scholar 

  • Gosselin F, Schyns PG (2001) Bubbles: a technique to reveal the use of information in recognition tasks. Vision Res 41:2261–6671

    Article  CAS  PubMed  Google Scholar 

  • Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Avian physiology, vol 5. Academic Press, San Diego, CA, pp 1–19

    Chapter  Google Scholar 

  • Haggbloom SJ (1983) Feature negative effect in rats’ discrimination learning in the runway. Anim Learn Behav 11:367–372

    Google Scholar 

  • Hearst E (1984) Absence as information: some implications for learning, performance, and representational processes. In: Roitblat HL, Bever TG, Terrace HS (eds) Animal cognition. Erlbaum, Hillsdale, NJ, pp 311–332

    Google Scholar 

  • Herrnstein RJ (1990) Levels of stimulus control: a functional approach. Cognition 37:133–166

    Article  CAS  PubMed  Google Scholar 

  • Herrnstein RJ, Loveland DH (1964) Complex visual concept in the pigeon. Science 146:549–551

    Article  CAS  PubMed  Google Scholar 

  • Huber L (2001) Visual categorization in pigeons. In: Cook RG (ed) Avian visual cognition. Available http://www.pigeon.psy.tufts.edu/avc/huber

  • Huber L, Troje NF, Loidolt M, Aust U, Grass D (2000) Natural categorization through multiple feature learning in pigeons. Q J Exp Psychol B 53:341–357

    Article  CAS  PubMed  Google Scholar 

  • Huber L, Apfalter W, Steurer M, Prossinger H (2005) A new learning paradigm elicits fast visual discrimination in pigeons. J Exp Psychol Anim Behav Process 31:237–246

    Article  PubMed  Google Scholar 

  • Jenkins HM (1973) Noticing and responding in a discrimination based on a distinguishing element. Learn Motiv 4:115–137

    Article  Google Scholar 

  • Jenkins HM, Sainsbury RS (1969) The development of stimulus control through differential reinforcement. In: Mackintosh NJ, Honig WK (eds) Fundamental issues in associative learning. Dalhousie University Press, Halifax, pp 123–167

    Google Scholar 

  • Jenkins HM, Sainsbury RS (1970) Discrimination learning with the distinctive feature on positive or negative trials. In: Mostofsky DI (ed) Attention: contemporary theory and analysis. Appleton Century, New York, pp 239–273

    Google Scholar 

  • Jitsumori M (1996) A prototype effect and categorization of artificial polymorphous stimuli in pigeons. J Exp Psychol Anim Behav Process 22:405–419

    Article  CAS  PubMed  Google Scholar 

  • Kjaersgaard A, Pertoldi C, Loeschcke V, Witzner Hansen D (2008) Tracking the gaze of birds. J Avian Biol 39:466–469

    Article  Google Scholar 

  • Lea SEG, Ryan CME (1983) Feature analysis of pigeons’ acquisition of concept discrimination. In: Commons ML, Herrnstein RJ, Wagner AR (eds) Quantitative analyses of behavior, vol 4. Ballinger, Cambridge, MA, pp 239–253

    Google Scholar 

  • Lubow RE (1974) High-order concept formation in the pigeon. J Exp Anal Behav 21:475–483

    Article  PubMed  Google Scholar 

  • Makino H, Jitsumori M (2007) Discrimination of artificial categories structured by family resemblances: a comparative study in people (Homo sapiens) and pigeons (Columba livia). J Comp Psychol 121:22–33

    Article  PubMed  Google Scholar 

  • Manns M, Güntürkün O (2009) Dual coding of visual asymmetries in the pigeon brain: the interaction of bottom-up and top-down systems. Exp Brain Res. doi:10.1007/s00221-009-1702-z

  • Ohayon S, Harmening W, Wagner H, Rivlin E (2008) Through a barn owl’s eyes: interactions between scene content and visual attention. Biol Cybern 98:115–132

    Article  PubMed  Google Scholar 

  • Ortega LJ, Stoppa K, Güntürkün O, Troje NF (2008) Limits of intraocular and interocular transfer in pigeons. Behav Brain Res 193:69–78

    Article  PubMed  Google Scholar 

  • Pettigrew JD, Wallman J, Wildsoet CF (1990) Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343:362–363

    Article  CAS  PubMed  Google Scholar 

  • Reberg D, Memmott J (1979) Shock as a signal for shock or no-shock: a feature-negative effect in conditioned suppression. J Exp Anal Behav 32:387–397

    Article  CAS  PubMed  Google Scholar 

  • Rehder B, Hoffman AB (2005) Eyetracking and selective attention in category learning. Cogn Psychol 51:1–41

    Article  PubMed  Google Scholar 

  • Troje NF, Huber L, Loidolt M, Aust U, Fieder M (1999) Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision Res 39:353–366

    Article  CAS  PubMed  Google Scholar 

  • Von Fersen L, Lea SEG (1990) Category discrimination by pigeons using five polymorphous features. J Exp Anal Behav 54:69–84

    Article  Google Scholar 

  • Wasserman EA, Anderson PA (1974) Differential autoshaping to common and distinctive elements of positive and negative discriminative stimuli. J Exp Anal Behav 22:491–496

    Article  PubMed  Google Scholar 

  • Watanabe S (1976) An experimental examination of peck location following monocular discrimination training in the pigeon. Annu Anim Psychol 26:109–116

    Google Scholar 

  • Wills AJ, Lea SEG, Liva LA, Osthaus B, Ryan CME, Suret MB, Bryant CML, Chapman SJA, Millar L (2009) A comparative analysis of the categorization of multidimensional stimuli: unidimensional classification does not necessarily imply analytic processing: evidence from pigeons (Columba livia), squirrels (Scurius carolinensis) and humans (Homo sapiens). J Comp Psychol (in press)

  • Wohlschläger A, Jäger R, Delius JD (1993) Head and eye movements in unrestrained pigeons (Columba livia). J Comp Psychol 107:313–319

    Article  Google Scholar 

  • Yamazaki Y, Aust U, Huber L, Hausmann M, Güntürkün O (2007) Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition 104:315–344

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Cao P, Yang Y, Wang SR (2008) Corollary discharge circuits for saccadic modulation of the pigeon visual system. Nat Neurosci 11:595–602

    Article  PubMed  Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum, New York

    Google Scholar 

Download references

Acknowledgments

We thank Maik Stüttgen for helpful comments on the statistics and Rick Scavetta for proof reading the manuscript. Lars Dittrich was supported by the International Graduate School of Neuroscience and by the Ruhr-University Research School funded by Germany’s Excellence Initiative [DFG GSC 98/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Dittrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittrich, L., Rose, J., Buschmann, JU.F. et al. Peck tracking: a method for localizing critical features within complex pictures for pigeons. Anim Cogn 13, 133–143 (2010). https://doi.org/10.1007/s10071-009-0252-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-009-0252-x

Keywords

Navigation