Skip to main content
Log in

Spatial behavior in male and female crayfish (Orconectes rusticus): learning strategies and memory duration

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that animals use multiple strategies to solve spatial tasks. We used a T-maze to examine spatial behavior in crayfish, using visual and tactile stimuli as place cues and a food-scented escape tank as reinforcement to leave the maze. In trials on a single day and across multiple days, crayfish learned to exit the maze with significantly reduced latency and with fewer turns. In addition, we examined place memory in 40-min periods with the maze closed and found that crayfish spent longer in the vicinity of a previously open exit compared to a closed exit. Probe tests were conducted using a forced-choice procedure to determine whether crayfish remembered the route out of the maze using primarily place cues or response learning. We found that approximately equal numbers of animals used each strategy, and individuals were able to switch from one strategy to the other on different test days. Males and females did not differ significantly in their performance in the place memory test, maze exit task, or probe tests. Both sexes displayed place memory for the exit location and reduced latency to exit during trials 24 h, 48 h, 72 h, and 1 week after initial training trials, suggesting that spatial memories in crayfish are relatively enduring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cog 10:29–36

    Article  Google Scholar 

  • Basil J, Sandeman D (2000) Crayfish (Cherax destructor) use tactile cues to detect and learn topographical changes in their environment. Ethology 106:247–259

    Article  Google Scholar 

  • Biegler R, McGregor A, Krebs JR, Healy SD (2001) A larger hippocampus is associated with longer-lasting spatial memory. Proc Natl Acad Sci USA 98:6941–6944

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Rutten K, Prickaerts J (2006) Analysis of spatial orientation strategies of male and female Wistar rats in a Morris water escape task. Behav Brain Res 171:216–224

    Article  PubMed  Google Scholar 

  • Broadbent NJ, Squire LR, Clark RE (2006) Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learn Mem 13:187–191

    Article  PubMed  Google Scholar 

  • Bubb DH, Lucas MC, Thom TJ (2002) Winter movements and activity of signal crayfish Pacifastacus leniusculus in an upland river, determined by radio telemetry. Hydrobiologia 483:111–119

    Article  Google Scholar 

  • Cheng K, Narendra A, Wehner R (2006) Behavioral ecology of odometric memories in desert ants: acquisition, retention, and integration. Behav Ecol 17:227–235

    Article  Google Scholar 

  • Cole MR, Clipperton A, Walt C (2007) Place versus response learning in rats. Learn Behav 35:214–224

    Article  PubMed  Google Scholar 

  • Collett TS, Graham P, Durier V (2003) Route learning by insects. Curr Opin Neurobiol 13:718–725

    Article  PubMed  CAS  Google Scholar 

  • Crook RJ, Hanlon RT, Basil JA (2009) Memory of visual and topographical features suggests spatial learning in nautilus (Nautilus pompilius L.). J Comp Psychol 123:264–274

    Article  PubMed  Google Scholar 

  • Davis KM, Huber R (2007) Activity patterns, behavioural repertoires, and agonistic interactions of crayfish: a non-manipulative field study. Behaviour 144:229–247

    Article  Google Scholar 

  • Driscoll I, Hamilton DA, Yeo RA, Brooks WM, Sutherland RJ (2005) Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Horm Behav 47:326–335

    Article  PubMed  CAS  Google Scholar 

  • Dudchenko PA (2001) How do animals actually solve the T maze? Behav Neurosci 115:850–860

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188

    Article  PubMed  CAS  Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192

    Article  PubMed  Google Scholar 

  • Foucaud J, Burns JG, Mery F (2010) Use of spatial information and search strategies in a water maze analog in Drosophila melanogaster. PLoS ONE 5:e15231. doi:10.1371/journal.pone.0015231

    Article  PubMed  CAS  Google Scholar 

  • Hazlett B, Rittschof D, Rubenstein D (1974) Behavioral biology of the crayfish Orconectes virilis. I. Home range. Am Midl Nat 92:301–319

    Article  Google Scholar 

  • Healy SD, Bacon IE, Haggis O, Harris AP, Kelley LA (2009) Explanations for variation in cognitive ability: behavioural ecology meets comparative cognition. Behav Process 80:288–294

    Article  CAS  Google Scholar 

  • Hudina S, Maguire I, Klobucar GIV (2008) Spatial dynamics of the noble crayfish (Astacus astacus L.) in the Paklenica National Park. Knowl Managt Aquat Ecosyst 388. doi:10.1051/kmae:2008001

  • Hvorecny LM, Grudowski JL, Blakeslee CJ, Simmons TL, Roy PR, Brooks JA, Hanner RM, Beigel ME, Karson MA, Nichols RH, Holm JB, Boal JG (2007) Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim Cogn 10:449–459

    Article  PubMed  Google Scholar 

  • Jacobs LF, Gaulin SJC, Sherry DF, Hoffman GE (1990) Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Natl Acad Sci USA 87:6349–6352

    Article  PubMed  CAS  Google Scholar 

  • Jonasson Z (2005) Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav R 28:811–825

    Article  Google Scholar 

  • Jones CM, Braithwaite VA, Healy SD (2003) The evolution of sex differences in spatial ability. Behav Neurosci 117:403–411

    Article  PubMed  Google Scholar 

  • Jozet-Alves C, Moderan J, Dickel L (2008) Sex differences in spatial cognition in an invertebrate: the cuttlefish. Proc R Soc B 275:2049–2054

    Article  PubMed  Google Scholar 

  • Kesner RP, Bolland BL, Dakis M (1993) Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Exp Brain Res 93:462–470

    Article  PubMed  CAS  Google Scholar 

  • Knierim JJ, Hamilton DA (2011) Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol Rev 91:1245–1279

    Article  PubMed  Google Scholar 

  • Li H, Cooper RL (2001) Spatial familiarity in the blind cave crayfish, Orconectes australis packardi. Crustaceana 74:417–433

    Article  Google Scholar 

  • Lopez J, Pereira de Vasconcelos A, Cassel J-C (2008) Environmental cue saliency influences the vividness of a remote spatial memory in rats. Neurobiol Learn Mem 90:285–289

    Article  PubMed  Google Scholar 

  • McMahon A, Patullo BW, Macmillan DL (2005) Exploration in a T-maze by the crayfish Cherax destructor suggests bilateral comparison of antennal tactile information. Biol Bull 208:183–188

    Article  PubMed  Google Scholar 

  • Menzel R, De Marco RJ, Greggers U (2006) Spatial memory, navigation and dance behaviour in Apis mellifera. J Comp Physiol A 192:889–903

    Article  Google Scholar 

  • Narendra A, Cheng K, Wehner R (2007) Acquiring, retaining and integrating memories of the outbound distance in the Australian desert ant Melophorus bagoti. J Exp Biol 210:570–577

    Article  PubMed  Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003) The influence of habitat stability on landmark use during spatial learning in the three-spined stickleback. Anim Behav 65:701–707

    Article  Google Scholar 

  • Odling-Smee LC, Boughman JW, Braithwaite VA (2008) Sympatric species of three spine stickleback differ in their performance in a spatial learning task. Behav Ecol Sociobiol 62:1935–1945

    Article  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    Article  PubMed  CAS  Google Scholar 

  • Paul CM, Magda G, Abel S (2009) Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 203:151–164

    Article  PubMed  Google Scholar 

  • Pleskacheva MG (2009) Behavior and spatial learning in radial mazes in birds. Neurosci Behav Physiol 39:725–739

    Article  PubMed  CAS  Google Scholar 

  • Pol-Bodetto S, Jeltsch-David H, Lecourtier L, Rusnac N, Mam-Lam-Fook C, Cosquer B, Geiger K, Cassel J-C (2011) The double-H maze test, a novel, simple, water-escape memory task: acquisition, recall of recent and remote memory, and effects of systemic muscarinic or NMDA receptor blockade during training. Behav Brain Res 218:138–151

    Article  PubMed  CAS  Google Scholar 

  • Postma A, Jager G, Kessels RPC, Koppeschaar HPF, van Honk J (2004) Sex differences for selective forms of spatial memory. Brain Cogn 54:24–34

    Article  PubMed  Google Scholar 

  • Putz G, Heisenberg M (2002) Memories in Drosophila heat-box learning. Learn Mem 9:349–359

    Article  PubMed  Google Scholar 

  • Restle F (1957) Discrimination of cues in mazes: a resolution of the “place-vs.-response” question. Psychol Rev 64:217–228

    Article  PubMed  CAS  Google Scholar 

  • Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38

    Article  PubMed  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford Univ Press, New York

    Google Scholar 

  • Shuranova Z, Burmistrov Y, Abramson CI (2005) Habituation to a novel environment in the crayfish Procambarus cubensis. J Crustacean Biol 25:488–494

    Article  Google Scholar 

  • Sitaraman D, Zars M, LaFerriere H, Chen Y-C, Sable-Smith A, Kitamoto T, Rottinghaus GE, Zars T (2008) Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci USA 105:5579–5584

    Article  PubMed  CAS  Google Scholar 

  • Smulders TV, Gould KL, Leaver LA (2010) Using ecology to guide the study of cognitive and neural mechanisms of different aspects of spatial memory in food-hoarding animals. Phil Trans R Soc B 365:883–900

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol Anim B 29:199–210

    Article  Google Scholar 

  • Spritzer MD, Daviau ED, Coneeny MK, Engelman SM, Prince WT, Rodriguez-Wisdom KN (2011) Effects of testosterone on spatial learning and memory in adult rats. Horm Behav 59:484–496

    Article  PubMed  CAS  Google Scholar 

  • Stein RA (1976) Sexual dimorphism in crayfish chelae: functional significance linked to reproductive activities. Can J Zool 54:220–227

    Article  Google Scholar 

  • Stein RA, Magnuson JJ (1976) Behavioral response of crayfish to a fish predator. Ecology 57:751–761

    Article  Google Scholar 

  • Texeira CM, Pomedli SR, Maei HR, Kee N, Frankland P (2006) Involvement of anterior cingulated cortex in the expression of remote spatial memory. J Neurosci 26:7555–7564

    Article  Google Scholar 

  • Tierney AJ (Ed) (2003) The crayfish nervous system: from histology to function. [Special issue]. Microsc ResTechniq 60

  • Tierney AJ, Lee J (2011) Spatial learning in a T-maze by the crayfish Orconectes rusticus. J Comp Psychol 125:31–39

    Article  PubMed  Google Scholar 

  • Vallortigara G (1996) Learning of colour and position cues in domestic chicks: male are better at position, females at colour. Behav Process 36:289–296

    Article  Google Scholar 

  • VanderSal ND, Hebets EA (2007) Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. J Exp Biol 210:3689–3695

    Article  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of memory. Nat Protoc 1:848–858

    Article  PubMed  Google Scholar 

  • Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Spring, Berlin

    Google Scholar 

  • Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96

    Google Scholar 

  • Wessnitzer J, Managan M, Webb B (2008) Place memory in crickets. Proc R Soc B 275:915–921

    Article  PubMed  Google Scholar 

  • White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77:125–184

    Article  PubMed  Google Scholar 

  • Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14:138–146

    Article  PubMed  Google Scholar 

  • Ziegler PE, Wehner R (1997) Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis. J Comp Physiol A 181:13–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Jane Tierney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tierney, A.J., Andrews, K. Spatial behavior in male and female crayfish (Orconectes rusticus): learning strategies and memory duration. Anim Cogn 16, 23–34 (2013). https://doi.org/10.1007/s10071-012-0547-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0547-1

Keywords

Navigation