Skip to main content
Erschienen in: Calcolo 3/2018

01.09.2018

A stabilizing augmented grid for rectangular discretizations of the convection–diffusion–reaction problems

verfasst von: Ali Sendur

Erschienen in: Calcolo | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a numerical method for approximate solution of the convection–diffusion–reaction problems in the case of small diffusion. The method is based on the standard Galerkin finite element method on an extended space defined on the original grid plus a subgrid, where the original grid consists of rectangular elements. On each rectangular elements, we construct a subgrid with few points whose locations are critical for the stabilization of the problem, therefore they are chosen specially depending on some specific conditions that depend on the problem data. The resulting subgrid is combined with the initial coarse mesh, eventually, to solve the problem in the framework of Galerkin method on the augmented grid. The results of the numerical experiments confirm that the proposed method shows similar stability features with the well-known stabilized methods for the critical range of problem parameters.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Araya, R., Barrenechea, G.R., Franca, L.P., Valentin, F.: Stabilization arising from PGEM: a review and further developments. Appl. Numer. Math. 59, 2065–2081 (2009)MathSciNetCrossRef Araya, R., Barrenechea, G.R., Franca, L.P., Valentin, F.: Stabilization arising from PGEM: a review and further developments. Appl. Numer. Math. 59, 2065–2081 (2009)MathSciNetCrossRef
2.
Zurück zum Zitat Brezzi, F., Hauke, G., Marini, D., Sangalli, G.: Link-cutting bubbles for the stabilization of convection–diffusion–reaction problems. Math. Models Methods Appl. Sci. 13, 445–461 (2003)MathSciNetCrossRef Brezzi, F., Hauke, G., Marini, D., Sangalli, G.: Link-cutting bubbles for the stabilization of convection–diffusion–reaction problems. Math. Models Methods Appl. Sci. 13, 445–461 (2003)MathSciNetCrossRef
3.
Zurück zum Zitat Brezzi, F., Franca, L.P., Russo, A.: Further considerations on residual-free bubbles for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 166, 25–33 (1998)MathSciNetCrossRef Brezzi, F., Franca, L.P., Russo, A.: Further considerations on residual-free bubbles for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 166, 25–33 (1998)MathSciNetCrossRef
4.
Zurück zum Zitat Brezzi, F., Marini, D.: Augmented spaces, two-level methods, and stabilizing sub-grids. Int. J. Numer. Methods Fluids 40, 31–46 (2002)CrossRef Brezzi, F., Marini, D.: Augmented spaces, two-level methods, and stabilizing sub-grids. Int. J. Numer. Methods Fluids 40, 31–46 (2002)CrossRef
5.
Zurück zum Zitat Brezzi, F., Marini, D., Russo, A.: Applications of pseudo residual-free bubbles to the stabilization of convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 166, 51–63 (1998)MathSciNetCrossRef Brezzi, F., Marini, D., Russo, A.: Applications of pseudo residual-free bubbles to the stabilization of convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 166, 51–63 (1998)MathSciNetCrossRef
6.
Zurück zum Zitat Brezzi, F., Marini, D., Russo, A.: On the choice of a stabilizing sub-grid for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 194, 127–148 (2005)CrossRef Brezzi, F., Marini, D., Russo, A.: On the choice of a stabilizing sub-grid for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 194, 127–148 (2005)CrossRef
7.
Zurück zum Zitat Brezzi, F., Russo, A.: Choosing bubbles for advection–diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587 (1994)MathSciNetCrossRef Brezzi, F., Russo, A.: Choosing bubbles for advection–diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587 (1994)MathSciNetCrossRef
8.
Zurück zum Zitat Brooks, A.N., Hughes, T.J.R.: Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRef Brooks, A.N., Hughes, T.J.R.: Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRef
9.
Zurück zum Zitat Chang-yeol, J., Roger, T.: Numerical approximation of two-dimensional convection–diffusion equations with multiple boundary layers. Int. J. Numer. Anal. Model 2, 367–408 (2005)MathSciNet Chang-yeol, J., Roger, T.: Numerical approximation of two-dimensional convection–diffusion equations with multiple boundary layers. Int. J. Numer. Anal. Model 2, 367–408 (2005)MathSciNet
10.
Zurück zum Zitat Chang-yeol, J., Roger, T.: Construction of boundary layer elements for singularly perturbed convection–diffusion equations and L2- stability analysis. Int. J. Numer. Anal. Model 5, 729–748 (2008)MathSciNetMATH Chang-yeol, J., Roger, T.: Construction of boundary layer elements for singularly perturbed convection–diffusion equations and L2- stability analysis. Int. J. Numer. Anal. Model 5, 729–748 (2008)MathSciNetMATH
11.
Zurück zum Zitat Codina, R.: Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput. Methods Appl. Mech. Eng. 156, 185–210 (1998)MathSciNetCrossRef Codina, R.: Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput. Methods Appl. Mech. Eng. 156, 185–210 (1998)MathSciNetCrossRef
12.
Zurück zum Zitat Coutinho, A.L.G.A., Franca, L.P., Valentin, F.: Numerical multiscale methods. Int. J. Numer. Methods Fluids 70, 403–419 (2012)MathSciNetCrossRef Coutinho, A.L.G.A., Franca, L.P., Valentin, F.: Numerical multiscale methods. Int. J. Numer. Methods Fluids 70, 403–419 (2012)MathSciNetCrossRef
13.
Zurück zum Zitat Donea, J.: A Taylor–Galerkin method for convective transport problems. Int. J. Numer. Methods Eng. 20, 101–119 (1984)CrossRef Donea, J.: A Taylor–Galerkin method for convective transport problems. Int. J. Numer. Methods Eng. 20, 101–119 (1984)CrossRef
14.
Zurück zum Zitat Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)CrossRef Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)CrossRef
15.
Zurück zum Zitat Farhat, C., Harari, I., Franca, L.P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190, 6455–6479 (2001)MathSciNetCrossRef Farhat, C., Harari, I., Franca, L.P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190, 6455–6479 (2001)MathSciNetCrossRef
16.
Zurück zum Zitat Franca, L.P., Madureira, A.L., Valentin, F.: Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput. Methods Appl. Mech. Eng. 194, 3006–3021 (2005)MathSciNetCrossRef Franca, L.P., Madureira, A.L., Valentin, F.: Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput. Methods Appl. Mech. Eng. 194, 3006–3021 (2005)MathSciNetCrossRef
17.
Zurück zum Zitat Franca, L.P., Nesliturk, A., Stynes, M.: On the stability of residual-free bubbles for convection–diffusion problems and their approximation by a two-level finite element method. Comput. Methods Appl. Mech. Eng. 166, 35–49 (1998)MathSciNetCrossRef Franca, L.P., Nesliturk, A., Stynes, M.: On the stability of residual-free bubbles for convection–diffusion problems and their approximation by a two-level finite element method. Comput. Methods Appl. Mech. Eng. 166, 35–49 (1998)MathSciNetCrossRef
18.
Zurück zum Zitat Franca, L.P., Tobiska, L.: Stability of the residual free bubble method for bilinear finite elements on rectangular grids. IMA J. Numer. Anal. 22, 73–87 (2002)MathSciNetCrossRef Franca, L.P., Tobiska, L.: Stability of the residual free bubble method for bilinear finite elements on rectangular grids. IMA J. Numer. Anal. 22, 73–87 (2002)MathSciNetCrossRef
19.
Zurück zum Zitat Franca, L.P., Valentin, F.: On an improved unusual stabilized finite element method for the advective–reactive–diffusive equation. Comput. Methods Appl. Mech. Eng. 190, 1785–1800 (2000)MathSciNetCrossRef Franca, L.P., Valentin, F.: On an improved unusual stabilized finite element method for the advective–reactive–diffusive equation. Comput. Methods Appl. Mech. Eng. 190, 1785–1800 (2000)MathSciNetCrossRef
20.
Zurück zum Zitat Gowrisankar, S., Natesan, S.: Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial-boundary-value problems on equidistributed grids. Comput. Phys. Commun. 185, 2008–2019 (2014)MathSciNetCrossRef Gowrisankar, S., Natesan, S.: Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial-boundary-value problems on equidistributed grids. Comput. Phys. Commun. 185, 2008–2019 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Harari, I.: Stability of semidiscrete formulations for parabolic problems at small time steps. Comput. Methods Appl. Mech. Eng. 193, 1491–1516 (2004)MathSciNetCrossRef Harari, I.: Stability of semidiscrete formulations for parabolic problems at small time steps. Comput. Methods Appl. Mech. Eng. 193, 1491–1516 (2004)MathSciNetCrossRef
22.
Zurück zum Zitat Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)MathSciNetCrossRef Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)MathSciNetCrossRef
23.
Zurück zum Zitat Hughes, T.J.R., Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (Ed.) Finite Element Methods for Convection Dominated Flows, ASME, pp. 19–35 (1979) Hughes, T.J.R., Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (Ed.) Finite Element Methods for Convection Dominated Flows, ASME, pp. 19–35 (1979)
24.
Zurück zum Zitat Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MathSciNetCrossRef Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MathSciNetCrossRef
25.
Zurück zum Zitat Irisarri, D.: Virtual element method stabilization for convection–diffusion–reaction problems using the link-cutting condition. Calcolo 54, 141–154 (2017)MathSciNetCrossRef Irisarri, D.: Virtual element method stabilization for convection–diffusion–reaction problems using the link-cutting condition. Calcolo 54, 141–154 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Kellogg, R.B., Xenophontos, C.: An enriched subspace finite element method for convection–diffusion problems. Int. J. Numer. Anal. Model 7, 477–490 (2010)MathSciNetMATH Kellogg, R.B., Xenophontos, C.: An enriched subspace finite element method for convection–diffusion problems. Int. J. Numer. Anal. Model 7, 477–490 (2010)MathSciNetMATH
27.
Zurück zum Zitat Nesliturk, A.: A stabilizing sub-grid for convection–diffusion problem. M3AS 16, 211–231 (2006)MathSciNetMATH Nesliturk, A.: A stabilizing sub-grid for convection–diffusion problem. M3AS 16, 211–231 (2006)MathSciNetMATH
28.
Zurück zum Zitat Nesliturk, A.: On the choice of stabilizing sub-grid for convection–diffusion problem on rectangular grids. Comput. Math. Appl. 12, 3687–3699 (2010)MathSciNetCrossRef Nesliturk, A.: On the choice of stabilizing sub-grid for convection–diffusion problem on rectangular grids. Comput. Math. Appl. 12, 3687–3699 (2010)MathSciNetCrossRef
29.
Zurück zum Zitat Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)MATH Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)MATH
30.
Zurück zum Zitat Sendur, A., Nesliturk, A.I., Kaya, A.: Applications of RFBs to the stabilization of the convection–diffusion–reaction problems in 2D. Comput. Methods Appl. Mech. Eng. 277, 154–179 (2014)CrossRef Sendur, A., Nesliturk, A.I., Kaya, A.: Applications of RFBs to the stabilization of the convection–diffusion–reaction problems in 2D. Comput. Methods Appl. Mech. Eng. 277, 154–179 (2014)CrossRef
31.
Zurück zum Zitat Shagi-Di, S., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. 18, 1467–1511 (1987)MathSciNetCrossRef Shagi-Di, S., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. 18, 1467–1511 (1987)MathSciNetCrossRef
Metadaten
Titel
A stabilizing augmented grid for rectangular discretizations of the convection–diffusion–reaction problems
verfasst von
Ali Sendur
Publikationsdatum
01.09.2018
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 3/2018
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0269-0

Weitere Artikel der Ausgabe 3/2018

Calcolo 3/2018 Zur Ausgabe