Skip to main content
Log in

Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This review aimed to highlight recent development in the preparation of titania/carbon nanotube composite (TiO2/CNT) and its application for the removal of organic pollutants in aqueous solution. Current studies indicate that the composite can enhance the absorption of visible light compared with pure TiO2. Generally, synergistic effects were observed for the degradation of some dyes, phenols, and benzene derivatives. The role of CNTs in the composite was explained to function as a support material, concentrate organic pollutants on the composite surface and more importantly, to extend electron–hole (e–h) recombination time as electron scavenger. However, opposite effects were observed for the degradation of some pharmaceuticals (e.g., carbamazepine and diclofenac). Despite different mechanisms involved, most organic pollutants can be photocatalytically degraded within a few minutes or hours. The summarized results and raised issues in this review will attract more future research for this new photocatalyst, particularly in areas such as synthesis methods, degradation mechanisms, and performance for more diversified structures of organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An GM, Ma WH, Sun ZY, Liu ZM, Han BX, Miao SD, Miao ZJ, Ding KL (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45(9):1795–1801. doi:10.1016/j.carbon.2007.04.034

    Article  CAS  Google Scholar 

  • Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Anion–pi, lone-pair-pi, pi–pi and hydrogen-bonding interactions in a Cu(II) complex of 2-picolinate and protonated 4,4′-bipyridine: crystal structure and theoretical studies. Eur J Inorg Chem 15:2238–2246. doi:10.1002/ejic.200900110

    Article  Google Scholar 

  • Bouazza N, Ouzzine M, Lillo-Ródenas MA, Eder D, Linares-Solano A (2009) TiO2 nanotubes and CNT-TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl Catal B Environ 92(3–4):377–383. doi:10.1016/j.apcatb.2009.08.017

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177. doi:10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  • Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834. doi:10.1038/nnano.2009.302

    Article  CAS  Google Scholar 

  • Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S (2010) Experimental evidence for the functional relevance of anion–pi interactions. Nat Chem 2(7):533–538. doi:10.1038/nchem.657

    Article  CAS  Google Scholar 

  • Diaz E, Ordonez S, Vega A (2007) Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J Colloid Interface Sci 305(1):7–16. doi:10.1016/j.jcis.2006.09.036

    Article  CAS  Google Scholar 

  • Dulay MT, Washington-Dedeaux D, Fox MA (1991) Surface photodeposition of metal oxides by decomposition of several group IVA organometallics (benzyltrimethylsilanes and benzyltrimethylstannanes) on TiO2. J Photochem Photobiol A Chem 61(1):153–163. doi:10.1016/1010-6030(91)85083-s

    Article  CAS  Google Scholar 

  • Duong TT, Nguyen QD, Hong SK, Kim D, Yoon SG, Pham TH (2011) Enhanced photoelectrochemical activity of the TiO2/ITO nanocomposites grown onto single-walled carbon nanotubes at a low temperature by nanocluster deposition. Adv Mater 23(46):5557–5562. doi:10.1002/adma.201103030

    Article  CAS  Google Scholar 

  • Eder D, Windle AH (2008) Morphology control of CNT–TiO2 hybrid materials and rutile nanotubes. J Mater Chem 18(17):2036–2043. doi:10.1039/b800499d

    Article  CAS  Google Scholar 

  • Gao Y, Liu HT, Ma MJ (2007) Preparation and photocatalytic behavior of TiO2-carbon nanotube hybrid catalyst for acridine dye decomposition. React Kinet Catal Lett 90(1):11–18. doi:10.1007/s11144-007-4884-z

    Article  CAS  Google Scholar 

  • Gao B, Chen GZ, Puma GL (2009) Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B Environ 89(3–4):503–509. doi:10.1016/j.apcatb.2009.01.009

    Article  CAS  Google Scholar 

  • Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  • Ji KH, Jang DM, Cho YJ, Myung Y, Kim HS, Kim Y, Park J (2009) Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures. J Phys Chem C 113(46):19966–19972. doi:10.1021/jp906476m

    Article  CAS  Google Scholar 

  • Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes—TiO2 nanocomposites. Carbon 42(5–6):1147–1151. doi:10.1016/j.carbon.2003.12.041

    Article  CAS  Google Scholar 

  • Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  • Li Z, Gao B, Chen GZ, Mokaya R, Sotiropoulos S, Puma GL (2011) Carbon nanotube/titanium dioxide (CNT/TiO(2)) core-shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl Catal B-Environ 110:50–57. doi:10.1016/j.apcatb.2011.08.023

    Google Scholar 

  • Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl S 41(10):1345–1367. doi:10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  • Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011a) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ 107(1–2):110–118. doi:10.1016/j.apcatb.2011.07.003

    Article  Google Scholar 

  • Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011b) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes–anatase composites. Appl Catal B Environ 102(3–4):563–571. doi:10.1016/j.apcatb.2010.12.039

    Article  Google Scholar 

  • Meyyappan M (ed) (2005) Carbon nanotubes: science and applications. CRC Press, Boca Raton

    Google Scholar 

  • Oh WC, Zhang FJ, Chen ML (2010) Preparation of carbon nanotubes/TiO(2) composites with multi-walled carbon nanotubes and titanium alkoxides by solvent effect and their photocatalytic activity. Asian J Chem 22(3):2231–2243

    CAS  Google Scholar 

  • Pyrgiotakis G, Lee SH (2005) Sigmund WM Advanced photocatalysis with anatase nano-coated multi-walled carbon nanotubes. MRS Spring Meeting, San Francisco

    Google Scholar 

  • Radushkevich LV, Lukyanovich VM (1952) On the carbon structure formed during thermal decomposition of carbon monoxide in the presence of iron (in Russian). Zh Fizich Khim 26:88

    CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106. doi:10.1016/j.jcis.2011.12.038

    Article  CAS  Google Scholar 

  • Sampaio MJ, Silva CG, Marques RRN, Silva AMT, Faria JL (2011) Carbon nanotube-TiO(2) thin films for photocatalytic applications. Catal Today 161(1):91–96. doi:10.1016/j.cattod.2010.11.081

    Article  CAS  Google Scholar 

  • Schultzenberger P, Schultzenberger L (1890) Sur quelques faits relatifs a l’histoire du carbon. CR Acad Sci Paris 111:774

    Google Scholar 

  • Silva CG, Faria JL (2010) Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl Catal B Environ 101(1–2):81–89. doi:10.1016/j.apcatb.2010.09.010

    Article  CAS  Google Scholar 

  • Sun J, Iwasa M, Gao L, Zhang QH (2004) Single-walled carbon nanotubes coated with titania nanoparticles. Carbon 42(4):895–899. doi:10.1016/j.carbon.2004.01.074

    Article  CAS  Google Scholar 

  • Thu HTV, Thu TTN, Phuong HTN, Do MH, Au HT, Nguyen TB, Nguyen DL, Park JS (2012) Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel. Mater Res Bull 47(2):308–314. doi:10.1016/j.materresbull.2011.11.016

    Article  Google Scholar 

  • Tsubota T, Ono A, Murakami N, Ohno T (2009) Characterization and photocatalytic performance of carbon nanotube material-modified TiO2 synthesized by using the hot CVD process. Appl Catal B Environ 91(1–2):533–538. doi:10.1016/j.apcatb.2009.06.024

    Article  CAS  Google Scholar 

  • Wang WD, Serp P, Kalck P, Faria JL (2005a) Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Appl Catal B Environ 56(4):305–312. doi:10.1016/j.apcatb.2004.09.018

    Article  CAS  Google Scholar 

  • Wang WD, Serp P, Kalck P, Faria JL (2005b) Visible light photodegradation of phenol on MWNT–TiO2 composite catalysts prepared by a modified sol–gel method. J Mol Catal A Chem 235(1–2):194–199. doi:10.1016/j.molcata.2005.02.027

    Article  CAS  Google Scholar 

  • Wang WD, Serp P, Kalck P, Silva CG, Faria JL (2008) Preparation and characterization of nanostructured MWCNT–TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43(4):958–967. doi:10.1016/j.materresbull.2007.04.032

    Article  CAS  Google Scholar 

  • Wang H, Wang HL, Jiang WF, Li ZQ (2009) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43(1):204–210. doi:10.1016/j.watres.2008.10.003

    Article  CAS  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21(21):2233–2239. doi:10.1002/adma.200802738

    Article  CAS  Google Scholar 

  • Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat Sci Eng R 49(4):89–112. doi:10.1016/j.mser.2005.04.002

    Article  Google Scholar 

  • Yao Y, Li G, Ciston S, Lueptow RM, Gray KA (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42(13):4952–4957. doi:10.1021/es800191n

    Article  CAS  Google Scholar 

  • Yen CY, Lin YF, Hung CH, Tseng YH, Ma CC, Chang MC, Shao H (2008) The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology 19(4). doi:10.1088/0957-4484/19/04/045604

  • Yu Y, Yu JC, Yu JG, Kwok YC, Che YK, Zhao JC, Ding L, Ge WK, Wong PK (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A Gen 289(2):186–196. doi:10.1016/j.apcata.2005.04.057

    Article  CAS  Google Scholar 

  • Yu HT, Quan X, Chen S, Zhao HM, Zhang YB (2008) TiO2-carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis. J Photochem Photobiol A Chem 200(2–3):301–306. doi:10.1016/j.jphotochem.2008.08.007

    Article  CAS  Google Scholar 

  • Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361. doi:10.1126/science.1104276

    Article  CAS  Google Scholar 

  • Zhou W, Pan K, Qu Y, Sun FF, Tian CG, Ren ZY, Tian GH, Fu HG (2010) Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere 81(5):555–561. doi:10.1016/j.chemosphere.2010.08.059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Research Grant from Australia Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Yu, Q., Connell, D.W. et al. Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants. Clean Techn Environ Policy 15, 871–880 (2013). https://doi.org/10.1007/s10098-013-0581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0581-y

Keywords

Navigation